Труды Кубанского государственного аграрного университета


<<<  Back

2023, № 106

UDC: 631.53.02
GSNTI: 68.35.03, 68.35.51

Effectiveness of carrot (Daucus carota L.) seed priming using nanocomposites of metallopolymers in non-aqueous solvents

Obtaining a levelled quality product depends primarily on the quality of the seed. There are a large number of treatments that improve the sowing quality of seeds. However, seed priming has the greatest influence on the friendship and germination rate. Seed priming is a process of activation of plant defence system after exposure to stressful environmental events, which leads to increased viability of plants to combat stress and is of great interest to study. This exposure leads to changes in seed metabolism and subsequently supports the successful establishment of plants in the environment through faster and more significant seed germination and growth of developing seedlings. The remarkable increase in the application of nanotechnology in agriculture has also stimulated research on plant nanoprime. Nanoparticles have been found to be more effective in influencing growth, quality, yield, reactive oxygen species and homeostasis in plant seeds than other priming methods. However, there is a need to test nanoparticles showing toxic effects on seed germination and seedling growth in deliberate seed treatment to understand the possible effects on plants and human health. Treatment with silver nanoparticles had a positive effect on improving the sowing quality of Marlinka carrot seeds. Application of silver nanocomposites in pre-sowing treatment with 0.25% ethylene glycol solution with colloidal silver solution 100 ppm/l promoted germination rate increase from 89% in the control to 96% in the variant. Increase in germination rate from 16.5 on the control to 18.6 on the variant of pre-sowing preparation.
Keywords: Priming, nanocomposites of metallopolymers, nanocleaners, ethylene glycol, germination, seedbed preparation.
DOI: 10.21515/1999-1703-106-197-202

References:

  1. Быковский, Ю. А. Перспективные препараты для инкрустирования семян столовых корнеплодов / Ю. А. Быковский, А. В. Янченко, М. И. Азопков [и др.] // Картофель и овощи. - 2018. - № 5. - С. 16-19.
  2. Игнатов, И. Н. Методы получения мелкодисперстных наночастиц коллоидного серебра / И. Н. Игнатов, О. В. Мосин // Интернет-журнал Науковедение. - 2014. - № 3(22). - С. 103.
  3. Юркова, И. Н. Влияние времени обработки композицией наносеребра семян пшеницы на их рост и развитие / И. Н. Юркова, А. В. Омельченко, И. А. Бугара // Ученые записки Таврического национального университета имени В.И. Вернадского. Серия: Биология, химия. - 2013. - С. 246-252.
  4. Castiglione, M. R. The effects of nano-TiO2 on seed germination, development and mitosis of root tip cells of Vicia narbonensis L. and Zea mays L. / M. R. Castiglione, L. Giorgetti, C. Geri, R. Cremonini // Nanopart. - 2011. -Vol. 13(6). - P. 2443-2449.
  5. El-Badri, А. M. Modulation of salinity impact on early seedling stage via nano-priming application of Zinc oxide on rapeseed (Brassica napus L.) / А. M. El-Badri // Plant Physiol. Biochem. - 2021. - No. 166. - P. 376-392.
  6. Filippou, P. G. Plant acclimation to environmental stress using priming agents. Plant Acclimation to Environmental Stress / P. G. Filippou, A. Tanou, V. Fotopoulos // Springer. - 2013. - P. 1-27.
  7. Ioannou, A. Advanced nanomaterials in agriculture under a changing climate: the way to the future? / A. Ioannou // Environ. - 2020. - No. 176.
  8. Jisha, K. C. Seed priming for abiotic stress tolerance: an overview. Acta Physiol / K. C. Jisha, K. Vijayakumari, J. T. Puthur // Plant. - 2013. - No. 35(5). - P. 1381-1396.
  9. Kandhol, N. V. Nano-priming: Impression on the beginner of plant life / N. V. Kandhol, P. Singh, N. Ramawat, R. Prasad // Plant Stress. - 2022. - No. 5.
  10. Krishnaraj, С. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. Plant growth metabolism / С. Krishnaraj, E. G. Jagan, R. Ramachandran, S. M. Abirami, N. Mohan, и P. T. Kalaicheivan // Process Biochem. - 2012. - No. 47(4). - P. 651-658.
  11. Park, S. Multi-walled carbon nanotubes and silver nanoparticles differentially affect seed germination, chlorophyll content, and hydrogen peroxide accumulation in carrot (Daucus carota L.) / S. Park, Y. J. Ahn // Biocatal. Agric. Biotechnol. - 2016. - No. 8. - P. 257-262.
  12. Pereira, A. E. Nanotechnology potential in seed priming for sustainable agriculture / A. E. Pereira, H. C. Oliveira, L. F. Fraceto, C. Santaelia // Nanomaterials. - 2021. - No. 11(2). - P. 267.
  13. Savvides, A. Chemical priming of plants against multiple abiotic stresses: mission possible? / A. Savvides, S. Ali, M. Tester, V. Fotopoulos // Trends Plant Sci. - 2016. - No. 21(4). - P. 329-340.
  14. Sharifi, R. S. Effects of seed priming with plant growth promoting rhizobacteria (PGPR) on yield and yield attributes of maize (Zea mays L.) hybrids /j. Sharifi, R. S., и K. Khavazi // Food Agric. Environ. - 2011. - No. 9 (3/4 part 1). - P. 496-500.
  15. Singh, S. Effects of nano-materials on seed germination and seedling growth: striking the slight balance between the concepts and controversies / S. Singh, D. K. Tripathi, N. K. Dubey, D. K. Chauhan // Mater. Focus. - 2016. - No. 5(3). - P. 195-201.
  16. Tian, Y. B. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.) / Y. Tian, B. Guan, D. Zhou, J. Yu, G. Li, Y. Lou // Sci. World J. - 2014. - P. 1-8.
  17. Waqas, M. A. Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea / M. A. Waqas, // Plant Sci. - 2019. - No. 10. - P. 1336.

Authors:

  1. Belova Sofia Viktorovna, PhD student, junior scientist employee, Federal State Budgetary Scientific Institution “Federal Scientific Centre for Vegetable Production”.
  2. Yanchenko Alexey Vladimirovich, PhD in Agriculture, Head of the Laboratory, Federal State Budgetary Scientific Institution “Federal Scientific Centre for Vegetable Production”.