Труды Кубанского государственного аграрного университета


<<<  Back

2023, № 106

UDC: 58.02+634.75
GSNTI: 34.31.27,34.31.31,68.03.00,68.35.53

Growth and development of garden strawberry plants under water stress

Along with progress in the breeding of garden strawberry and agrotechnical tools aimed at increasing productivity and resistance to drought, the problem of crop losses remains relevant. At present, much attention is paid to the possibilities of using silicon-containing preparations obtained from renewable plant raw materials to increase plant resistance to adverse environmental factors, due to environmental friendliness and low cost. For the first time, on the example of garden strawberry plants of the cv. Solnechnaya polyanka, the results of studies of the effect of silicon chelates on the morphometric and physiological characteristics of plants with optimal moisture content of the soil substrate (50% of the total water capacity) and under conditions of moderate water stress (30% of the total water capacity) are presented. As a source of silicon chelates, 0.3 g/l of a mechanocomposite from rice husks and green tea waste was used. The mechanocomposite was obtained by processing raw materials by the solid-phase mechanochemical method (development of the Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of the Russian Academy of Sciences, Novosibirsk), leading to preparations (mechanocomposites) characterized by an increased concentration of chelated soluble forms of silicon. It was established that under the action of the mechanocomposite, the dry biomass of shoots (up to 20%), the content of chlorophyll a (up to 50%), the total content of chlorophyll a + b (up to 40%), the activity of superoxide dismutase (up to 50%) and peroxidase (up to 80%) increased, the content of hydrogen peroxide decreased (up to 30%), both under conditions of optimal moisture and moderate water stress. The results obtained can be used to increase the growth and adaptive potential of garden strawberry plants under conditions of water stress under the action of a mechanocomposite based on silicon chelates.
Keywords: Garden strawberry, silicon chelates, growth, plant development, water stress, photosynthetic pigments, hydrogen peroxide, redox enzymes.
DOI: 10.21515/1999-1703-106-174-183

References:

  1. Амброс, Е. В. Оптимизация систем регенерации микропобегов генотипов Fragaria½ ananassa (Rosaceae), перспективных для сибирского региона / Е. В. Амброс, Ю. Г. Зайцева, А. А. Красников, Т. И. Новикова // Растительный мир Азиатской России. - 2017. - № 4(28). - С. 73-80. - DOI: 10.21782/RMAR1995-2449-2017-4(73-80).
  2. Битюцкий, Н. П. Микроэлементы высших растений / Н. П. Битюцкий. - СПб.: Изд-во С.-Петерб. ун-та, 2011. - 368 с.
  3. Говорова, Г. Ф. Засухоустойчивость и жаростойкость новых сортов и гибридов земляники ананасной / Г. Ф. Говорова, А. Е. Буланов // Научные ведомости БелГУ. Серия Естественные науки. - 2011. - № 3. - С. 175-179.
  4. ГОСТ Р 53135-2008. Посадочный материал плодовых, ягодных, субтропических, орехоплодных, цитрусовых культур и чая. Технические условия. - М.: Стандартинформ, 2009. - 41 с.
  5. Жанаева, Т. А. Флавонолы и окисляющие их ферменты в онтогенезе гречихи посевной / Т. А. Жанаева, И. Е. Лобанова, Т. А. Кукушкина // Известия РАН. Серия биологическая. - 1999. - № 1. - С. 105-108.
  6. Кузнецов, В. В. Физиология растений / В. В. Кузнецов, Г. А. Дмитриева. - М.: Абрис, 2011. - 784 с.
  7. Полесская, О. Г. Изменение активности антиоксидантных ферментов в листьях и корнях пшеницы в зависимости от формы и дозы азота в среде / О. Г. Полесская, Е. И. Каширина, Н. Д. Алехина // Физиология растений. - 2004. - Т. 51. - С. 686-691.
  8. Самсонова, Н. Е. Кремний в растительных и животных организмах / Н. Е. Самсонова // Агрохимия. - 2019. - № 1. - С. 86-96.
  9. AL-Oqla, F. M. Sustainable biocomposites: challenges, potential and barriers for development / F. M. AL-Oqla, M. A. Omari In: M. Jawaid, S. M. Sapuan, O. Y. Alothman (eds). Green biocomposites. - NY.: Springer, 2017. - Vol. 11. - P. 13-29. - DOI: 10.1007/978-3-319-46610-1_2.
  10. Ambros, E. V. An innovative approach to ex vitro rooting and acclimatization of Fragaria ½ ananassa Duch.microshoots using a biogenic silica and green-tea-catechin-based mechanocomposite / E. V. Ambros, S. Y. Toluzakova, L. S. Shrainer, E. G. Trofimova, T. I. Novikova // In vitro cellular and developmental biology. - Plant. - 2018. - Vol. 54. - P. 436-443. - DOI: 10.1007/s11627-018-9894-1.
  11. Babu, R. C.Comparison of measurement methods of osmotic adjustment in rice cultivars / R. C. Babu, M. S. Pathan, A. Blum, H. T. Nguyen // Crop science. - 1999. - No. 1. - P. 150-158. - DOI: 10.2135/cropsci1999.0011183X003 900010024x.
  12. Bellincampi, D. Extracellular H2O2 induced by oligogalacturonides is not involved in the inhibition of the auxin-regulated rolB gene expression in tobacco leaf explants / D. Bellincampi, N. Dipperro, G. Salvi, F. Cervcone, G. De Lorenzo // Plant physiology. - 2000. - No. 4. - P. 1379-1385. - DOI: 10.1104/pp.122.4.1379.
  13. Bhat, J. A. Role of silicon in mitigation of heavy metal stresses in crop plants /j. A. Bhat, S. M. Shivaraj, P. Singh, D. B. Navadagi, D. K. Tripathi, P. K. Dash, A. U. Solanke, H. Sonah, R. Deshmukh // Plants. - 2019. - No. 71. - 71 p. - DOI: 10.3390/plants8030071.
  14. Coskun, D. The controversies of silicon’s role in plant biology / D. Coskun, R. Deshmukh, H. Sonah, et al. // New phytologist. - 2019. - Vol. 221. - No. 1. - P. 67-85. - DOI: 10.1111/nph.15343.
  15. Etesami, H. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants / H. Etesami, B. R. Jeong // Ecotoxicology and environmental safety. - 2018. - Vol. 147. - P. 881-896. - DOI: 10.1016/j.ecoenv.2017.09.063.
  16. Frew, A. The role of silicon in plant biology: a paradigm shift in research approach / A. Frew, L. A. Weston, O. L. Reynolds, G. M. Gurr // Annals of botany. - 2018. - No. 7. - P. 1265-1273. - DOI: 10.1093/aob/mcy009.
  17. Giannopolitis, C. N. Superoxide dismutase I. occurrence in higher plants / C. N. Giannopolitis, S. K. Ries // Plant Physiology. - 1977. - No. 2. - P. 309-314. - DOI: 10.1104/pp.59.2.309.
  18. Gunes, A. Influence of silicon on sunflower cultivars under drought stress, I: growth, antioxidant mechanisms, and lipid peroxidation / A. Gunes, J. Pilbeam, A. Inal, S. Coban // Communications in soil science and plant analysis. - 2008. - No. 13-14. - P. 1885-1903. - DOI: 10.1080/00103620802134651.
  19. Guntzer, F. Benefts of plant silicon for crops: a review / F. Guntzer, C. Keller, J. D. Meunier // Agronomy for sustainable development. - 2012. - Vol. 32. - P. 201-213. - DOI: 10.1007/s13593-011-0039-8.
  20. Khan, M. I. R. The intricacy of silicon, plant growth regulators and other signaling molecules for abiotic stress tolerance: an entrancing crosstalk between stress alleviators / M. I. R. Khan, F. Ashfaque, H. Chhillar, M. Irfan, N. A. Khan / Plant physiology andbiochemistry. - 2021. - Vol. 162. - P. 36-47. - DOI: 10.1016/j.plaphy.2021.02.024.
  21. Liang, Y. Silicon uptake and transport in plants: physiological and molecular aspects / Y. Liang, M. Nicolic, R. Belanger, H. Gong, A. Song (eds). In: Silicon in agriculture. - Dordrecht: Springer, 2015. - P. 69-82. - DOI: 10.1007/978-94-017-9978-2_4.
  22. Lichtenthaler, H. K. Chlorophylls and carotenoids: measurement and characterization by UV-Vis spectroscopy / H. K. Lichtenthaler, C. Buschmann // Current protocols in food analytical chemistry. - 2001. - P. 1-8. - DOI: 10.1002/0471142913.faf0403s01.
  23. Moradtalab, N. Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagusclarus) mitigate the adverse effects of drought stress on strawberry / N. Moradtalab, R. Hajiboland, N. Aliasgharzad, T.E. Hartmann, G. Neumann // Agronomy. - 2019. - No. 1. - 41 p. - DOI: 10.3390/agronomy9010041.
  24. Pessarakli, M. Handbook of plant and crop stress / M. Pessarakli. - Second Edition CRC Press, 1999. - 1254 p. - DOI: 10.1201/9781351104609-6.
  25. Safoora, D. Effect of silicon on growth and development of strawberry under water deficit conditions / D. Safoora, C. Ghobadi, B. Baninasab, B. Baninasab, S.S. Bidabadi // Horticultural plant journal. - 2018. - No. 6. - P. 226-232. - DOI: 10.1016/j.hpj.2018.09.004.
  26. Schwalm, C. R. Global patterns of drought recovery / C. R. Schwalm, W. R. L. Anderegg, A. M. Michalak, et al. // Nature. - 2017. - No. 548. - P. 202-205. - DOI: 10.1038/nature23021.
  27. Shapolova, E. G. Mechanochemical solubilization of silicon dioxide with polyphenol compounds of plant origin / E. G. Shapolova, O. I. Lomovsky // Russian journal of bioorganic chemistry. - 2013. - No. 7. - P. 765-770. - DOI: 10.1134/S1068162012070175.
  28. Trofimova, E. G. Scaling of the mechanochemical process of production of silicon chelates / E. G. Trofimova, E. M. Podgorbunskikh, T. S. Skripkina, A. L. Bychkov, O. I. Lomovsky // Bulgarian chemical communication. - 2018. - Vol. 50. - P. 45-48.
  29. Wang, M. Functions of silicon in plant drought stress responses / M. Wang, R. Wang, L. A. J. Mur, J.Ruan, Q. Shen, S. Guo // Horticulture research. - 2021. - No. 1. - 254 p. - DOI: 10.1038/s41438-021-00681-1.
  30. Zahedi, S. M. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress / S. M. Zahedi, F. Moharrami, S. Sarikhani, M. Padervand // Scientific reports. - 2020. - No. 1 - 17672. - DOI: 10.1038/s41598-020-74273-9.
  31. Aeby, H. Catalase in vitro / H. Aeby // Methods in enzymology. - 1984. - No. 105. - P. 121-126. - DOI: 10.1016/s0076-6879(84)05016-3.

Authors:

  1. Ambros Elena Valeryevna, PhD in Biology, Federal State Budgetary Institution of Science "Central Siberian Botanical Garden" of the Siberian Branch of the Russian Academy of Sciences.
  2. Kolyada Anna Alekseevna, research engineer, Federal State Budgetary Institution of Science "Central Siberian Botanical Garden" of the Siberian Branch of the Russian Academy of Sciences.
  3. Panova Uliana Leonidovna, research engineer, Federal State Budgetary Institution of Science "Central Siberian Botanical Garden" of the Siberian Branch of the Russian Academy of Sciences.