Труды Кубанского государственного аграрного университета


<<<  Back

2022, № 97

UDC: 578.544
GSNTI: 34.27.21

Homologs of the majer antigene of bacteriophage RB30 from compost methagenome

The article is devoted to the search for homologues of the Highly antigenic Outer Capsid protein (Hoc-protein) of the bacteriophage RB30 in the metagenome of the compost microbiota in order to create fundamental foundations for constructing bacteriophages with high affinity for the substrates of this environment using genomic engineering methods. The Hoc-protein of bacteriophage RB30 has an additional immunoglobulin-like PKD domain, which provides additional, Ca2+-mediated binding of oligo- and polysaccharides from various biotopes. Bacteriophages created on the basis of the use of specific protein sequences found on the surface of their capsid, which have an increased affinity for the substrates of this environment, could serve for more effective control of enterobacterial contamination by bacteriophage treatment by analogy with phage therapy in humans or farm animals. Using the DELTA-BLAST software tool, 367 homologues were found in the GenBank database. Among these protein sequences, those previously characterized as carrying the PKD omene and having a statistical characteristic E-vaule less than 10-8 were selected. A phylogenetic analysis of the selected sequences was carried out, in which sequences of phage proteins close to the Hoc-protein of bacteriophage RB30 were used as controls. This analysis showed that only five of the sequences were co-located with Hoc RB30 and its closest homologue from the bacteriophage RB27 genome. Structural modeling was performed for the closest homologue from the compost metagenome And it was shown that the protein MNE16030.1. carries domains responsible for binding glycosides. In this way, using the methods of bioinformatics and using methods of molecular modeling of the protein structure, the selection of the most promising sequences suitable for obtaining an artificial surface of bacteriophages, which could be used to control the contamination of compost with enterobacteria by prophylactic bacteriophage treatment, was carried out.
Keywords: Bacteriophage T4, bacteriophage RB30, majer antigene of T4-pages, A2-milk, metagenome of the compost microbiota, UPGMA algoritm, phylogenetic analysis, protein structural modeling.
DOI: 10.21515/1999-1703-97-215-227

References:

  1. Ishii, T. The two dispensable structural proteins (soc and hoc) of the T4 phage capsid; their purification and properties, isolation and characterization of the defective mutants, and their binding with the defective heads in vitro / T. Ishii, M. Yanagida. - J Mol Biol. 1977; 109:487-514. - DOI: 10.1016/S0022-2836(77)80088-0.
  2. Ishii, T. Binding of the structural protein soc to the head shell of bacteriophage T4 / T. Ishii, Y. Yamaguchi, M. Yanagida. // J Mol Biol. - 1978;120: 533-544. - DOI: 10.1016/0022-2836(78)90352-2.
  3. Rao, V. B. Structure and assembly of bacteriophage / V. B. Rao, L. W. Black. - T4 head. Virol J. 2010;7:356. - DOI: 10.1186/1743-422X-7-356.
  4. Black, L. W. Structure, assembly, and DNA packaging of the bacteriophage T4 head / L. W. Black, V. B. Rao. -Adv Virus Res. 2012; 82:119-153. - DOI: 10.1016/B978-0-12-394621-8.00018-2.
  5. Fokine, A. Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci USA. 2004;101:6003-6008. - DOI: 10.1073/pnas.0400444101.
  6. Malys, N. A bipartite bacteriophage T4 SOC and HOC randomized peptide display library: detection and analysis of phage T4 terminase (gp17) and late sigma factor (gp55) interaction / N. Malys, D. Y. Chang, R. G. Baumann, D. Xie, L. W. Black // J Mol Biol. - 2002; 319:289-304. - DOI: 10.1016/S0022-2836(02)00298-X.
  7. Sathaliyawala, T. Assembly of human immunodeficiency virus (HIV) antigens on bacteriophage T4: a novel in vitro approach to construct multicomponent HIV vaccines / T. Sathaliyawala et al. - J Virol. 2006; 80: 7688-7698. - DOI: 10.1128/JVI.00235-06.
  8. Ren, Z. J. Orally delivered foot-and-mouth disease virus capsid protomer vaccine displayed on T4 bacteriophage surface: 100% protection from potency challenge in mice / Z. J. Ren et al. - Vaccine. 2008; 26: 1471-1481. - DOI: 10.1016/j.vaccine.2007.12.053.
  9. Sathaliyawala, T. Functional analysis of the highly antigenic outer capsid protein, Hoc, a virus decoration protein from T4-like bacteriophages / T. Sathaliyawala, M. Z. Islam, Q. Li, A. Fokine, M. G. Rossmann, V. B. Rao // Mol Microbiol. - 2010. - Jul; 77(2): 444-55. - DOI:10.1111/j.1365-2958.2010.07219.x.
  10. Chin, W. H. Bacteriophages evolve enhanced persistence to a mucosal surface / W. H. Chin, C. Kett, O. Cooper, D. Müseler, Y. Zhang, R. S. Bamert, R. Patwa, L. C. Woods, C. Devendran, D., Korneev, J. Tiralongo, T. Lithgow, M. J. McDonald, A. Neild, J. J. Barr // Proc Natl Acad Sci U S A. - 2022 Jul 5; 119(27): e2116197119. - DOI: 10.1073/pnas.2116197119.
  11. Barr, J. J. Subdiffusive motion of bacteriophage in mucosal surfaces increases the frequency of bacterial encounters /j. J. Barr, R. Auro, N. Sam-Soon, S. Kassegne, G. Peters, N. Bonilla, M. Hatay, S. Mourtada, B. Bailey, M. Youle, B. Felts, A. Baljon, J. Nulton, P. Salamon, F. Rohwer // Proc Natl Acad Sci U S A. - 2015. - Nov 3; 112(44): 13675-80. - DOI: 10.1073/pnas.1508355112.
  12. Zimin, A. A.Comparative Analysis of Amino Acid Sequences in Particular Domains of Hoc Proteins in Teequatrovirinae Subfamily Bacteriophages / A. A., Zimin, G. V. Mikoulinskaia, L. F. Nigmatullina, N. N. Nazipova // Mathematical Biology and Bioinformatics. - 2018. - V. 13. - No S. P. t39-t58. - DOI: 10.17537/2018.13.t39.
  13. Vieites, J. M. Metagenomics approaches in systems microbiology /j. M. Vieites, M. E. Guazzaroni, A. Beloqui, P. N. Golyshin, M. Ferrer // FEMS Microbiology Reviews, - vol. 33. - No. 1, P. 236-255, 2009.
  14. Hess, M. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen / M. Hess, A. Sczyrba, R. Egan, T-W. Kim, H. Chokhawala, G. Schroth et al. // Science. 2011; 331(6016): 463-7.
  15. Brulc, J. M. Genecentric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases /j. M. Brulc, D. A. Antonopoulos, MEB Miller, M. K. Wilson, A. C. Yannarell, E. A. Dinsdale et al. - Proc Natl Acad Sci USA. - 2009; 106(6): 1948-53.
  16. Warnecke, F. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite / F. Warnecke, P. Luginbühl, N. Ivanova, M. Ghassemian, T. H. Richardson, J. T. Stege et al. // Nature. - 2007; 450(7169): 560-5.
  17. Engel, P. Functional diversity within the simple gut microbiota of the honey bee / P. Engel, V. G. Martinson, N. A. Moran // Proc Natl Acad Sci USA. 2012; 109(27): 11002-7.
  18. Delmont, T. O. Structure, fluctuation and magnitude of a natural grassland soil metagenome / T. O. Delmont, E. Prestat, K. P. Keegan, M. Faubladier, P. Robe, I. M. Clark et al. // ISME J. 2012; 6(9): 1677-87.
  19. Guazzaroni, M. E. "Synthetic biology approaches to improve biocatalyst identification in metagenomic library screening" / M. E. Guazzaroni, R. Silva-Rocha, R. J. Ward // Microbial Biotechnology, vol. 8. - No. 1. - P. 52-64, 2015.
  20. Guazzaroni, M. E. "Metagenomics as a new technological tool to gain scientific knowledge" // World Journal of Microbiology and Biotechnology, vol. 25. - No. 6. - P. 945-954, 2009.
  21. Скобликов, Н. Э. Оптимальная схема применения нетрансдуцирующих бактериофагов E. coli для профилактики пост-отъёмной диареи поросят / Н. Э. Скобликов, С. И. Кононенко, А. А. Зимин // Труды Кубанского государственного аграрного университета. - 2012. - № 37. - С. 169-173.
  22. Скобликов, Н. Э. Эффективность различных способов применения нетрансдуцирующих бактериофагов E. coli для профилактики пост-отъемной диареи поросят в условиях интенсивного производства свинины / Н. Э. Скобликов, С. И. Кононенко, А. А. Зимин // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. - 2012. - № 78 (04) - С. 763-774.
  23. Скобликов, Н. Э. Выделение и отбор нетрансдуцирующих бактериофагов E. coli для противоколибактериозных препаратов / Н. Э. Скобликов, С. И. Кононенко, Д. В. Осепчук, Е. А. Москаленко, В. В. Авдиенко, А. А. Зимин // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. - 2016. - №08(122). С. 554-566.
  24. Зимин, А. А. Использование бактериофагов для борьбы с колибактериозом и кампилобактериозом в птицеводстве / А. А. Зимин, Ф. В. Кочетков, Д. В. Осепчук, С. И. Кононенко, Н. Э. Скобликов // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. - 2016. - № 09(123). С. 421-432.
  25. Никулин, Н. А. Конструирование терапевтических фаговых коктейлей на основе бактериофагов: преимущества и недостатки / Н. А. Никулин, С. И. Кононенко, А. Г. Кощаев, А. А. Зимин // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. - 2017. - № 09(133).
  26. Зимин, А. А. Конструирование мутантов бактериофага Т4 со сниженной антигенностью / А. А. Зимин, А. М. Бутанаев, Н. Е. Сузина, Н. Э. Скобликов, Л. Р. Сахабутдинова, Н. В. Присяжная, С. И. Кононенко, А. Г. Кощаев // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета. - 2017. - № 134(10).
  27. Altschul, S. F. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs / S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, D. J. Lipman // Nucleic Acids Res. - 1997. - Sep 1; 25(17): 3389-402.
  28. Tamura, K. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. / K. Tamura, G. Stecher, D. Peterson, A. Filipski, S. Kumar // Mol Biol Evol. - 2013. - Dec;30(12):2725-9. - DOI: 10.1093/molbev/mst197.
  29. Waterhouse, A. SWISS-MODEL: homology modelling of protein structures and complexes / A. Waterhouse, M. Bertoni, S. Bienert, G. Studer, G. Tauriello, R. Gumienny, F. T.Heer, T. A. P. de Beer, C. Rempfer, L. Bordoli, R. Lepore, T. Schwede // Nucleic Acids Res. 46(W1), W296-W303 (2018).

Authors:

  1. Zimin Andrei Antonovich, PhD in Biology, senior researcher, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS - a separate subdivision of the Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences".
  2. Nikulina Aleksandra Nikolaevna, postgraduate student, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS - a separate subdivision of the Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences".
  3. Nikulin Nikita Alekseevich, postgraduate student, CEOS, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS - a separate subdivision of the Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences".
  4. Xia H., professor, School of Life Sciences, Taizhou University.
  5. Lu Y., professor, School of Life Sciences, Shanghai Normal University.
  6. Osepchuk Denis Vasilyevich, DSc in Agriculture, leading researcher, Federal State Budgetary Scientific Institution Krasnodar Research Centre for Animal Husbandry and Veterinary Medicine.
  7. Koshchaev Andrey Georgievich, DSc in Biology, professor, academican RAS, Federal State Budgetary Educational Institution of Higher Education “I.T. Trubilin Kuban State Agrarian University”.