Труды Кубанского государственного аграрного университета


<<<  Back

2020, № 86

UDC: 636.02+637.03+636.4.033
GSNTI: 68.39.35, 68.39.19, 68.03.05

Color characteristics of commercial hybrids’ meat - the first results

An important feature for the animal breeding program is the quality of meat, which includes a significant trademark - color and saturation. In this study, the spectrophotometer CM-600d measured the color characteristics of meat and backfat, the average values of which were: L* (coordinates of light and shadow) - 68.8 ± 0.3 and 41.8 ± 0.2, and a* (spectrum from green to purple) - 4.9 ± 0.2 and 7.7 ± 0.2 and b * (from blue to yellow) - 14.4 ± 0.2 and 12.7 ± 0.1, respectively. To reduce the heterogeneity of color values in the population, an adjustment of the indicators was made, according to the results of which the coefficient of variation for all features decreased, in particular for a * (speck and meat) - by 41.7 and 41.9%, for b* - 50 and 43.5% and for L* - 34 and 47.8%, respectively. Analysis of genetic correlations showed a negative strong relationship between: L* (meat) - a* (meat), L* (meat) - a* (backfat), L* (backfat) - a* (backfat), a* (meat) and b* (meat) with b* (backfat) L* (meat) - a* (meat), L* (meat) - a* (speck). The coefficients were: -0.88, -0.90, -0.92, -0.93, -0.90 and -0.90. Since L* is the coordinator of color and shadow, with an increase in the lightness of meat, the saturation of red color decreases and the spectrum of yellow tint in the backfat increases, for which the parameters a* and b* are responsible, due to the established negative correlation of features. In the meat color spectrum, with a decrease in the red tint, the yellow tint decreases, as evidenced by positive genetic and phenotypic correlations of 0.93 and 0.79, while for the consumer the product becomes less attractive, as it loses external color saturation. Calculations of inheritance coefficients revealed moderate ones in a* (meat) - 0.32, b* (meat) and a* (backfat) - 0.29 and strong in b* (backfat) - 0.71. The findings make it possible to establish a close relationship between meat color spectra (L*, a * and b*), which will bring research to a new level of understanding of the interdependence of technological processes and genetic aspects in animal husbandry.
Keywords: Meat color, backfat color, genetic correlation, phenotypic correlation, commercial hybrid.
DOI: 10.21515/1999-1703-86-140-145

References:

  1. Белоус, А. А. Генетические и паратипические факторы. характеризующие эффективность использования корма у свиней породы Дюрок. / А. А. Сермягин, О. В. Костюнина, Е. А. Требунских, Н. А. Зиновьева // Сельскохозяйственная биология. - 2018. - Т. 53. - № 4. - С. 712-722. DOI: 10.15389/agrobiology.2018. 4.712rus.
  2. Bekhit, A. Metmyoglobin reducing activity / A. Bekhit, C. Faustman. - Meat Sci. 2005;71:407-39. DOI: 10.1016/j.meatsci.2005.04.032.
  3. Kuo, I. Y. Signaling in muscle contraction / I. Y. Kuo, B. E. Ehrlich. - Cold Spring Harb Perspect Biol. 2015;7(2):a006023. DOI: 10.1101/ cshperspect.a006023.
  4. Li, B. Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis / B. Li, C. Dong, P. Li Sci. - Rep. 2016;6:35224. DOI: 10.1038/srep35224.
  5. Lucas, L. V. Whole-genome association analysis of pork meat pH revealed three significant regions and several potential genes in Finnish Yorkshire pigs Medicine / L. V. Lucas, Marja-Liisa Sevon-Aimonen, T. V. Serenius, V. Hietakangas, P. Uimari // Biology Published in BMC Genetics, 2017. - DOI:10.1186/s12863-017-0482-x.
  6. Mancini, R. A. Effects of endpoint temperature, pH, and storage time on cooked internal color reversion of pork longissimus chops / R. A. Mancini, D. H. Kropf, M. C. Hunt, D. E. Johnson // Journal Muscle Foods. - 2005;16:16-26. DOI: 10.1111/ j.1745-4573.2004.07103.x.
  7. Miller, K. D. Frequency of the Rendement Napole RN-allele in a population of American Hampshire pigs / K. D. Miller, M. Ellis, F. K. Mckeith // Journal Animal Sci. 2000;78:1811-5. DOI: 10.2527/2000.7871811x.
  8. Misztal, I. BLUPF90 and related programs (BGF90). Proc. 7th World Congress on genetics applied to livestock production / I. Misztal, S. Tsuruta, T. Strabel, B. Auvray, T. Druet, D. H. Lee / Montpellier, 2002. -28(28-27): 21-22.
  9. Ravnskjaer, K. Role of the cAMP pathway in glucose and lipid metabolism / K. Ravnskjaer, A. Madiraju, M. Handb // Montminy Exp. Pharmacol, 2016;233:29-49. DOI: 10.1007/164_2015_32. DOI: 10.1007/164_2015_32.
  10. Rauw, W. M. Feeding time and feeding rate and its relationship with feed intake, feed efficiency, growth rate, and rate of fat deposition in growing Duroc barrows / W. M. Rauw, J. Soler, J. Tibau, J. Reixach, L. J. Gomez. - Raya Anim Sci. 2006 Dec; 84(12):3404-9. DOI: 10.2527/jas.2006-209.
  11. Seideman S. C., Cross H. R., Smith G. C., Durland P. R. Factors associated with fresh meat color: a review. Jornal of Food Qality, V. 6, 1984. DOI: 10.1111/j.1745-4557.1984.tb00826.x.
  12. Shen, L. Y. Effects of muscle fiber type on glycolytic potential and meat quality traits in different Tibetan pig muscles and their association with glycolysis-related gene expression / L. Y. Shen, J. Luo, H. G. Lei. - Genet Mol Res. 2015;14:14366-78. DOI: 10.4238/2015.November.13.22
  13. Verardo, L. L. After genome-wide association studies: Gene networks elucidating candidate genes divergences for number of teats across two pig populations / L. L. Verardo, M. S. Lopes, S. Wijga, O. Madsen, F. F. Silva, M. M. Groenen, E. F. Knol, P. S. Lopes, S. F. Guimarães. - J. Anim. Sci. 2016;94(4):1446-1458. DOI: 10.2527/jas.2015-9917.
  14. Verardo, L. L. Revealing new candidate genes for reproductive traits in pigs: combining Bayesian GWAS and functional pathways / L. L. Verardo, F. F. Silva, M. S. Lopes, O. Madsen, J. W. M. Bastiaansen, E. F. Knol, M. Kelly, L. Varona, P. S. Lopes, S. E. F. Guimarães. - Genet. Sel. Evol. 2016;48:9. DOI: 10.1186/s12711-016-0189-x.
  15. Viriyarattanasak, C. Equations for spectrophotometric determination of relative concentrations of myoglobin derivatives in aqueous tuna meat extracts / C. Viriyarattanasak, N. Hamada-Sato, M. Watanabe. - Food Chem., 2011;127:656-61. DOI: 10.1016/j.foodchem.2011.01.001.
  16. Yamada, T. Interaction between myoglobin and mitochondria in rat skeletal muscle / T. Yamada, Y. Furuichi, H. Takakura // Journal Appl. Physiol., 2013;114:490-7. DOI: 10.1152/ japplphysiol.00789.2012.

Authors:

  1. Belous Anna Aleksandrovna, Junior Researcher, "Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst".
  2. Sermyagin Aleksand Aleksandrovich, Phd in Agriculture, "Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst".
  3. Zinovieva Natalia Anatolievna, Academician RAS, DSc in Biology, Professor, "Federal Research Center for Animal Husbandry named after Academy Member L.K. Ernst".