Труды Кубанского государственного аграрного университета

<<<  Back

2022, № 98

UDC: 632.937.15+632.938.2+579.64
GSNTI: 68.37.13, 68.37.07, 34.27.21

Endophytes and plant protection from biotic stress: Prospects for the preparation of biocontrol agent new generation

The report suggests approaches to enhancing the defensive effect of microbiological biocontrol agent used in crop production to protect against phytophages due to the ability to form an artificial plant-bacterial metabiome using endophytes that produce antiviral, fungicidal and insecticidal compounds and stimulate phytoimmunity. In order to improve the ecological situation of agrocenoses and reduce the pesticide load as a promising alternative to the use of chemical plant protection agents, modern directions of designing the genome of endophytes based on the use of RNA interference mechanisms that allow the creation of targeted biocontrol agent with prolonged protection for various types of agricultural plants are considered.
Keywords: Endophytes, biocontrol agent, metabiome, RNA interference.
DOI: 10.21515/1999-1703-98-98-104


  1. Hu, H.-W. The end of hunger: fertilizers, microbes and plant productivity / H.-W. Hu, Q.-L. Chen, J.-Z. He // Microbial Biotechnology. - 2021. - V. 15. - P. 1050-1054. https://doi.org/10.1111/1751-7915.13973.
  2. http://www.indigoag.com.
  3. http://www.betaboston.com/news/2016/02/18/startup-indigo-wants-to-use-bacteria-to-create-hardy-super-crops.
  4. Taulé, C. Insights into the early stages of plant-endophytic bacteria interaction / C. Taulé, P. Vaz-Jauri, F. Battistoni // World J. Microbiol. Biotechnol. - 2021. - V. 37. - Art. 13. https://doi.org/10.1007/s11274-020-02966-4.
  5. Максимов, И. В. Возможность и механизмы действия Bacillus subtilis 26Д и гифомицета Beauveria bassiana Уфа-2 при применении для защиты растений картофеля от фитофтороза и колорадского жука / И. В. Максимов, А. В. Сорокань, А. Р. Нафикова, Г. В. Беньковская // Микология и фитопатология. - 2015. - T. 49. - № 5. - С. 317-324.
  6. Nagendran, K. Exploiting endophytic bacteria for the management of sheath blight disease in rice / K. Nagendran, G. Karthikeyan, M.P. Faisal, P. Kalaiselvi, M. Raveendran, K. Prabakar, T. Raguchander // Biological Аgriculture & Нorticulture. - 2014. - V. 30. - No. 1. - P. 8-23. - https://doi.org/10.1080/01448765.2013.841099.
  7. Kloepper, J. W. Bacterial Endophytes as Elicitors of Induced Systemic Resistance /j. W. Kloepper, C. M. Ryu // Microbial Root Endophytes. Berlin, Heidelberg: Springer. - 2006. - P. 33-52. - https://doi.org/10.1007/3-540-33526-9_3.
  8. Maksimov, I. V. Plant Growth Promoting Rhizobacteria as Alternative to Chemical Crop Protectors from Pathogens (Review) / I. V. Maksimov, R. R. Abizgil’dina, L. I. Pusenkova // Appl. Biochem. and Microbiol. - 2011. - V. 47. - No. 4. - P. 333-345. - https://doi.org/10.1134/S0003683811040090.
  9. Roh, J. Y. Expression of Bacillus thuringiensis mosquitocidal toxin in an antimicrobial Bacillus brevis strain /j. Y. Roh, Y. S. Kim, Y. Wang, Q. Liu, X. Tao, H.G. Xu, Y.H. Je //j. of Asia-Pacific Entomol. - 2010. - V. 13. - No. 1. - P. 61-64. - https://doi.org/10.1016/j.aspen.2009.10.001.
  10. Maksimov, I. V. Recombinant Bacillus subtilis 26DCryChS line with gene Btcry1Ia encoding Cry1Ia toxin from Bacillus thuringiensis promotes integrated wheat defense against pathogen Stagonospora nodorum Berk. and greenbug Schizaphis graminum Rond. / I. V. Maksimov, D. K. Blagova, S. V. Veselova, A. V. Sorokan, G. F. Burkhanova, E. A. Cherepanova, E. R. Sarvarova, S. D.Rumyantsev, V. Yu. Alekseev, R. M. Khayrullin // Biological Control. - 2020. - V. 144. - Art. 104242. - https://doi.org/10.1016/j.biocontrol.2020.104242.
  11. Zhang, X. Enhancing plant disease suppression by Burkholderia vietnamiensis through chromosomal integration of Bacillus subtilis chitinase gene chi113 / X. Zhang, Y. Huang, P. R. Harvey, Y. Ren, G. Zhang, H. Zhou, H. E. Yang // Вiotechnol. Lett. - 2012. - V. 34. - No. 2. - P. 287-293. - https://doi.org/10.1007/s10529-011-0760-z.
  12. Fu, R. Identification and improving biocontrol effect of strain PG-7 by genetic modification with chitinase gene / R. Fu, L. Zhang, W. Xing, H. Zhang, Y. Gu, H. Chang, W. Chen, //j. of Simulation. - 2015. - V. 3. - No. 3. - P. 52-55.
  13. Revathi, K. Biocontrol efficacy of protoplast fusants between Bacillus thuringiensis and Bacillus subtilis against Spodoptera litura Fabr. / K. Revathi, R. Chandrasekaran, A. Thanigaivel, S. A. Akirubakaran, S. Senthil-Nathan // Arch. Phytopathol. Plant Prot. - 2014. - V. 47. - No. 11. - P. 1365-1375. - https://doi.org/10.1080/03235408.2013.840999.
  14. Jones, D. A. Agrobacterium radiobacter strain K1026, a genetically engineered derivative of strain K84, for biological control of crown gall / D. A. Jones, A. Kerr // Plant Disease. - 1989. - V. 73. - No. 1. - P. 15-18.
  15. Weng, J. Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption /j. Weng, Y. Wang, J. Li, Q. Shen, R. Zhang // Appl. Microbial. Biotechnol. - 2013. - V. 97. - No. 19. - P. 8823-8830. https://doi.org/10.1007/s00253-012-4572-4.
  16. Bora, R. S.Introduction of a Lepidopteran-specific insecticidal crystal protein gene of Bacillus thuringiensis subsp. kurstaki by conjugal transfer into a Bacillus megaterium strain that persists in the cotton phyllosphere / R. S. Bora, M. G. Murty, R.Shenbagarathai, V. Sekar // Appl. Environ. Microbiol. - 1994. - V. 60. - No. 1. - P. 214-222. - https://doi.org/10.1128/aem.60.1.214-222.1994.
  17. Tomasino, S. F. Field Performance of Clavibacter xyli subsp. cynodontis Expressing the Insecticidal Protein Gene cryIA(c) of Bacillus thuringiensis against European Corn Borer in Field Corn / S. F. Tomasino, R. T. Leister, M. B. Dimock, R. M. Beach, J. L. Kelly // Biological Control. - 1995. - V. 5. - No 3. - P. 442-448. - https://doi.org/10.1006/bcon.1995.1053.
  18. Sorokan, A. Endophytic strain Bacillus subtilis 26DCryChS producing Cry1Ia toxin from Bacillus thuringiensis promotes multifaceted potato defense against Phytophthora infestans (Mont.) de Bary and Pest Leptinotarsa decemlineata Say / A. Sorokan, G. Benkovskaya, G. Burkhanova, D. Blagova, I. Maksimov // Plants. - 2020. - V. 9. - Art. 1115. - https://doi.org/10.3390/plants9091115.
  19. Jiang, C. Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. tomato DC3000 by suppressing miR472 and activating CNLs-mediated basal immunity in Arabidopsis / C. Jiang, Z. Fan, Z. Li, D. Niu, Y. Li, M. Zheng, Q. Wang, H. Jin, J. Guo // Mol. Plant Pathol. - 2020. - V. 21. - P. 854-870. - https://doi.org/10.1111/mpp.12935.
  20. Xie, S. Bacillus amyloliquefaciens FZB42 represses plant miR846 to induce systemic resistance via a jasmonic acid-dependent signalling pathway / S. Xie, H. Jiang, T. Ding, Q. Xu, W. Chai, B. Cheng // Mol. Plant Pathol. - 2018. - V. 19. - P. 1612-1623. https://doi.org/10.1111/mpp.12634.
  21. Xie, S. Identification of miRNAs Involved in Bacillus velezensis FZB42-Activated Induced Systemic Resistance in Maize / S. Xie, H. Yu, E. Li, Y. Wang, J. Liu, H. Jiang // Int. J. Mol. Sci. - 2019. - V. 20. - Art. 5057. - https://doi.org/10.3390/ijms20205057.
  22. Caccia, S. Enhancement of Bacillus thuringiensis Toxicity by Feeding Spodoptera littoralis Larvae with Bacteria Expressing Immune Suppressive dsRNA. S. Caccia, F. Astarita, E. Barra, I. Di Lelio, P. Varricchio, F. Pennacchio //j. Pest Sci. - 2020. - V. 93. - P. 303-314. - https://doi.org /10.1007/s10340-019-01140-6.
  23. Liu, H. Inner Plant Values: Diversity, Colonization and Benefits from Endophytic Bacteria / H. Liu, L. C. Carvalhais, M. Crawford, E. Singh, P. G. Dennis, C. M. J. Pieterse, P. M. Schenk // Front. Microbiol. - 2017. - V. 8. - Art. 2552. - https://doi.org/10.3389/fmicb.2017.02552.
  24. Whitten, M. M. A. Symbiont-mediated RNA interference in insects / M. M. A. Whitten, P. D. Facey, R. Del Sol, L. T. Fernández-Martínez, M. C. Evans, J. J. Mitchell, O G. Bodger, P. J. Dyson // Proc. R. Soc. Lond. B: Biol. Sci. - 2016. - V. 283. - No. 1825. - Art. 20160042. - https://doi.org/10.1098/rspb.2016. 0042.
  25. Fletcher, S. J. Perspective on RNAi-Based Biopesticides / S. J. Fletcher, P. T. Reeves, B. T. Hoang, N. Mitter // Front. Plant Sci. - 2020. - V. 11. - Art. 51. - https://doi.org/10.3389/fpls.2020.00051.


  1. Maksimov Igor Vladimirovich, DSc in Biology, Professor, The Institute of Biochemistry and Genetics is a separate structural subdivision of the Federal State Budgetary Institution of Science "Ufa Federal Research Center of the Russian Academy of Sciences".
  2. Veselova Svetlana Viktorovna, PhD in Biology, senior researcher, The Institute of Biochemistry and Genetics is a separate structural subdivision of the Federal State Budgetary Institution of Science "Ufa Federal Research Center of the Russian Academy of Sciences".
  3. Shein Mikhail Yurievich, postgraduate student, The Institute of Biochemistry and Genetics is a separate structural subdivision of the Federal State Budgetary Institution of Science "Ufa Federal Research Center of the Russian Academy of Sciences".
  4. Khairullin Ramil Magzinnurovich, DSc in Biology, professor, The Institute of Biochemistry and Genetics is a separate structural subdivision of the Federal State Budgetary Institution of Science "Ufa Federal Research Center of the Russian Academy of Sciences".