Труды Кубанского государственного аграрного университета


<<<  Back

2022, № 101

UDC: 633.15:577.122.5:581.14
GSNTI: 68.43.31

Molecular genetic aspects of biosynthesis and starch accumulation in corn endosperm

Corn is a valuable material for scientific research in genetics and breeding, due to the impressive size of the genome and the high level of DNA polymorphism. The main goal was to summarize the results of scientific research on genetics, molecular biology, as well as selection of the quality and quantity of corn grains, which are of particular value in the selection of the most valuable corn genotypes by starch content, for further breeding in order to obtain high-quality and productive corn lines and hybrids. Understanding starch biosynthesis and its relationship with structure and functionality is of great interest, as it is a prerequisite for purposeful improvement of corn quality. Studies related to the study of genetic polymorphism of starch biosynthesis genes in corn are necessary for the development of new lines and hybrids with an increased content of amylopectin in grain. As of today, great progress has been made in the study of biochemistry and mechanisms of starch synthesis: wax germ plasma has been characterized using simple repeating sequences (SSR markers) distributed throughout the gene; new mutant alleles of the wax corn gene have been identified; molecular biological analyses of polymorphism of starch biosynthesis genes in corn lines have been carried out; analysis of starch, amylose, amylopectin content in grain; work on the development of corn hybrids rich in amylopectin or amylose, depending on agricultural preferences; data sets on proteomics were created to study the accumulation system of numerous proteins that are responsible for the synthesis of starch in corn.
Keywords: Corn, starch, starch biosynthesis, amylose, amylopectin, waxy, endosperm.
DOI: 10.21515/1999-1703-101-73-85

References:

  1. Wurzburg, O. B. Ed.Introduction, in Modified Starches: Properties and Uses CRC Press Boca Raton FL. - 1986, chap 1.
  2. Fisher, M. B. Immunological characterization of maize starch branching enzymes / M. B. Fisher, and C. Boyer // Plant Physiol, 1983, 72: 813-816. PMID:16663090.
  3. Buckler, E. S. Molecular and functional diversity of maize / E. S Buckler, B. S. Gaut, M. D. McMullen // Curr Opin Plant Biol, 2006, 9:172-176.
  4. Rousseau, D. Fast virtual histology using X-ray in-line phase tomography: application to the 3D anatomy of maize developing seeds / D. Rousseau, T. Widiez, S. Di Tommaso, H. Rositi, J. Adrien, E. Maire, M. Langer, C. Olivier, F. Peyrin, P. Rogowsky // Plant Methods. - 2015, 11:55. - DOI 10.1186/s13007-015-0098-y.
  5. Jianzhou, Qu.Comparative transcriptomics reveals the difference in early endosperm development between maize with different amylose contents / Qu1, 2, Jianzhou, Xu1,2, Shutu, Tian1,2, Xiaokang, Li1,2, Ting, Wang1,2, Yuyue Zhong1,2, Jiquan Xue1,2 Licheng and Guo1,2, Qu Dongwei et al. // PeerJ, 2019. - DOI 10.7717/peerj.7528.
  6. Larkins, B. A. Maize kernel development / B. A. Larkins. - Boston: CAB International, 2017.
  7. Gehring, M. Endosperm and imprinting, inextricably linked / M. Gehring, P. R. Satyaki // Plant Physiology, 2017, рр. 173:143-154. - DOI 10.1104/pp.16.01353.
  8. Gontarek, B. C. NKD transcription factors are central regulators of maize endosperm development / B. C. Gontarek, A. K. Neelakandan, H. Wu, P. W. Becraft // The Plant cell, 2016, 28:2916-2936 DOI 10.1105/tpc.16.00609.
  9. Jianzhou, Qu.Comparative transcriptomics reveals the difference in early endosperm development between maize with different amylose contents / Qu. Jianzhou, Xu. Shutu, T. Xiaokang, Li. Ting, W. Licheng, Z. Yuyue, X. Jiquan and G. Dongwei // PeerJ, 2019. - DOI 10.7717/peerj.7528.
  10. Tayade, R. Insight into the prospects for the improvement of seed starch in legume - A Review. Front / R. Tayade, K. P. Kulkarni, H. Jo, J. T. Song, J.-D. Lee // Plant Sci 10. 2019, Р. 1213.
  11. Ju-Kyung, Y. Corn Starch: Quality and Quantity Improvement for Industrial Uses / Y. Ju-Kyung and M. Yong-Sun // Plants 11, 2022, Р. 92. - https://doi.org/10.3390/plants11010092.
  12. Barbara, P. Formation of starch in plant cells / P. Barbara, C. Z. Samuel // Cellular and Molecular Life Sciences, 2016, рр. 73:2781-2807. - DOI 10.1007/s00018-016-2250-x.
  13. Whitt, S. R. Genetic diversity and selection in the maize starch pathway / S. R. Whitt, L. M. Wilson, M. I. Tenaillon, B. S. Gaut and E. S. T.Buckler. - Proc. Natl Acad 99. Sci. 2002, 12959-12962 (in USA).
  14. Glaring, M. A. Genotype-specific spatial distribution of starch molecules in the starch granule: a combined CLSM and SEM approach / M. A. Glaring, C. B. Koch, A. Blennow // Biomacromolecules 7, 2006, рр. 2310-2320. - doi: 10.1021/bm060216e.
  15. He, W. The defective effect of starch branching enzyme IIb from weak to strong induces the formation of biphasic starch granules in amylose-extender maize endosperm / W. He, X. Liu, L. Lin, A. Xu, D. Hao, C. Wei // Plant Mol. Biol103, 2020, рр. 355-371. - DOI: 10.1007/s11103-020-00998-w.
  16. Song, Y. Optimization of butter, xylitol, and high-amylose maize flour on developing a low-sugar cookie / Y. Song, X. Li, Y. Zhong // Food Sci. Nutr 7. 2019, рр. 3414-3424. doi: 10.1002/fsn3.1160.
  17. Liu, N. Genome-wide association study identifies candidate genes for starch content regulation in maize kernels / N. Liu, Y Xue, Z. Guo, W. Li and J. Tang (b) // Front. Plant Sci. 7, 2016, р. 1-8.
  18. Inouchi, N. DSC characteristics of gelatinization of starches of single-, double-, and triple-mutants and their normal counterpart in the inbred Oh43 maize (Zea mays L.) background. Starch / N. Inouchi, D. V. Glover, Y. Sugimoto and H. Fuwa. - Staerke 43, 1991, Р. 468.
  19. Hennen-Bierwagen, T. A. Genomic specification of starch biosynthesis in maize endosperm, PW. Becraft (ed.) / T. A. Hennen-Bierwagen, A. M. Myers // Seed Genomics. John Wiley & Sons, 2013, р. 123-137.
  20. Kyu, J. S.Comparative Gene Expression Analysis of Seed Development in Waxy and Dent Corn (Zea mays L.) /j. S. Kyu, C. Ik-Young, H. P. Dae, K. L. Ju // Plant Breed. Biotech. 6(4), 2018, р. 337-353. - https://doi.org/10.9787/PBB.2018.6.4.337.
  21. Larissa, M. W. Dissection of Maize Kernel Composition and Starch Production by Candidate Gene Association / M. W. Larissa, R. W. Sherry, M. I. Ana, R. R. Torbert, M. G. Major and S. B. Edward // The Plant Cell. Vol. 16, 2004, рр. 2719-2733.
  22. Buckler, E. S. Plant molecular diversity and applications to genomics / E. S. Buckler and J. M. Thornsberry // Curr. Opin. Plant Biol. 5, 2002, рр. 107-111.
  23. Flint-Garcia, S. A. Structure of linkage disequilibrium in plants / S. A. Flint-Garcia, J. M. Thornsberry and E. S. Buckler // Annu. Rev. Plant Biol. 54, 2003, рр. 357-374.
  24. Thornsberry, J. M. Dwarf8 polymorphisms associate with variation in flowering time /j. M. Thornsberry, M. M Goodman, J. Doebley, S. Kresovich, D. Nielsen and IV E. S. Buckler // Nat. Genet. 28, 2001, р. 286-289.
  25. Collins, G. N. A new type of Indian Corn from China / G. N. Collins // Bureau Plant Ind. (Bulletin), 161, 1909, р. 1-30.
  26. Coe, E. H. The genetics of corn, in Corn and Corn Improvement / E. H. Jr. Coe, M. G. Neuffer and D. A. Hoisington, G. F. Sprague and J. W. Dudley. - Eds., American Society of Agronomy, Madison, WI, 1988, chap. 3.
  27. Zahirul, A.Combining higher accumulation of amylopectin, lysine and tryptophan in maize hybrids through genomics-assisted stacking of waxy1 and opaque2 genes / A. Talukder1, Vignesh Muthusamy1 Zahirul, Chhabra 1 Rashmi, Gain1 Nisrita, B. Shashidhar, Reddappa1, J. Mishra1 Subhra Kasana1, Ravindra, Bhatt1 Vinay, Chand1 Gulab, Katral1 Ashvinkumar, K. Mehta Brijesh 2, K. Guleria3, Rajkumar U. Satish Zunjare1 & Hossain1. Firoz // Scientific Reports. 2022, 12:706. https://doi.org/10.1038/s41598-021-04698-3.
  28. Li, C. The gentic architecture of amylose biosyntheses in maize kernel / C. Li, Y. Huang, R. Huang, Y. Wu, W. Wang // Plant Biotechnol. J, 16. 2018, рр. 688-695. - doi: 10.1111/pbi.12821
  29. Demerec, M. Am. J. / M. Demerec. - Bot. 11, 1924, р. 461-464.
  30. Huang, B. Q. Waxy locus and its mutant types in maize Zea mays / B. Q. Huang, M. L. Tian, J. J. Zhang & Y. B. Huang. - L. J.Integr. Agr. 9, 2010, р. 1-10.
  31. Bao, J. D.Identification of glutinous maize landraces and inbred lines with altered ranscription of waxy gene /j. D. Bao, J. Q. Yao, J. Q. Zhu. - Mol Breed, 2012, 30:1707-1714
  32. Zhang, W. L Increasing lysine content of waxy maize through introgression of opaque-2 and opaque-16 genes using molecular assisted and biochemical development / W. L. Zhang, W. P. Yang, M. C. Wang, W. Wang, G. P. Zeng, Z. W. Chen // PLoS One; 8, 2013, doi: 10.1371/ journal.pone.0056227.
  33. Liu, J. Mutation loci and intragenic selection marker of the granule-bound starch synthase gene in waxy maize /j. Liu, T. Rong, W. Li // Mol Breed 20, 2007, р. 93-102. - DOI: 10.1007/s11032-006-9074-6.
  34. Fan, L. J. Post-domestication selection in the maize starch pathway / L. J. Fan et al. // PLoS ONE 4, 2009. - https ://doi.org/10.1371/journ al.pone.00076 12.
  35. Wu, X. Y. Molecular characteristics of two new waxy mutations in China waxy maize / X. Y. Wu et al. - Mol. Breeding 37, 2017. - https ://doi.org/10.1007/s1103 2-016-0612-6.
  36. Hu, B. J. Active miniature inverted-repeat transposable elements transposon in plants: a review / B. J. Hu & M. B. Zhou, J. Chin // Biotechnol. 34, 2018, р. 204-215.
  37. Wu, X. Y. New waxy allele wx-Reina found in Chinese waxy maize / X. Y. Wu et al. - Genet. Resour. Crop Evol. 66, 2019, р. 885-895.
  38. Chen, M. H. Development of three allele-specific codominant rice Waxy gene PCR markers suitable for marker-assisted selection of amylose content and paste viscosity / M. H. Chen, R. G. Fjellstrom, E. F. Christensen & C. J. Bergman. - Mol. Breed. 26, 2010, р. 513-523.
  39. Zahirul, A. T. Marker-assisted Introgression of Waxy1 Gene into Elite Inbreds for Enhancement of Amylopectin in Maize Hybrids / A. T. Zahirul, M. Vignesh, C. Rashmi, S. C. Hema, U. Z. Rajkumar and H. Firoz. - 13th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition and Environmental Security Ludhiana, 2018, р.191-197 (in India).
  40. Вакула, С. И. SSR-локусы, потенциально ассоциированные с высоким содержанием амилопектина в эндосперме зерна кукурузы / С. И. Вакула, О. А. Орловская, Л. В. Хотылева, А. В. Кильчевский // Вавиловский журнал генетики и селекции. - 2018. - № 22(6). - С. 640-647. - DOI 10.18699/VJ18.405.
  41. Zhang, X. D. The effect of amylose on kernel phenotypic characteristics, starch-related gene expression and amylose inheritance in naturally mutated high-amylose maize / X. D. Zhang, X. C. Gao, Z. W. Li, L. C. Xu, Y. B. Li, R. H. Zhang, J. Q. Xu, D. W. Guo - J.Integr. Agric. 19, 2020, р. 1554-1564.
  42. Zhao, Y. Reduced expression of starch branching enzyme IIa and IIb in maize endosperm by RNAi constructs greatly increases the amylose content in kernel with nearly normal morphology / Y. Zhao, N. Li, B. Li, Z. Li, G. Xie, J. Zhang // Planta, 2015, 241, р. 449-461. - DOI: 10.1007/s00425-014-2192-1.
  43. Zhong, Y. The relationship between the expression pattern of starch biosynthesis enzymes and molecular structure of high amylose maize starch / Y. Zhong, L. Liu, J. Qu, S. Li, A. Blennow, S. A. Seytahmetovna, X. Liu, D. Guo. - Carbohydr. Polym. 2020, Р. 247. - DOI: 10.1016/j.carbpol.2020.116681.
  44. Van Hung, P. Waxy and high-amylose wheat starches and flours-characteristics, functionality and application / P. Van Hung, T. Maeda and N. Morita. - Trends Food Sci. Technol. 17, 2006, рр. 448-456.
  45. Vineyard, M. L. Development of “Amylomaize”- Corn hybrids with high amylose starch: I. Genetic considerations / M. L. Vineyard, R. P. Bear, M. M. MacMasters, W. L Deatherage. - Agron. J. 1958, 50, р. 595-598.
  46. James, M. G. Characterization of the maize gene sugary1, a determinant of starch composition in kernels / M. G. James, D. S. Robertson and A. M. Myers. - Plant Cell, 1995, 7, 417-429.
  47. Changsheng, L. The genetic architecture of amylose biosynthesis in maize kernel / L. Changsheng, H. Yongcai, H.Ruidong, W. Yongrui and W. Wenqin // Plant Biotechnology Journal. 2017. - p. 1-8. - DOI: 10.1111/pbi.12821.
  48. Shang-Jing, LI Jia-Rui1. Analysis of Amylose Accumulation During Seed Development in Maize / LI Jia-Rui1 Shang-Jing, Wei-Hua QIAO, Xian-Sheng ZHANG // Acta Genetica Sinica. 33 (11), 2006, р. 1014-1019.
  49. Liu, F. The amylose extender mutant of maize conditions novel protein-protein interactions between starch biosynthetic enzymes in amyloplasts / F. Liu, A. Makhmoudova, E. A. Lee, R. Wait, M. J Emes, I. J. Tetlow // Journal of Experimental Botany 60, 2009, р. 4423-4440.
  50. Fushan, L. Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein-protein interactions / L. Fushan, A. Zaheer A. L. Elizabeth, D. Elizabeth, L. Qiang, A. Regina, K. M. Matthew, J. E. Michael and J. T. Ian // Journal of Experimental Botany, Vol. 63, No. 3, 2012, pp. 1167-1183. - DOI:10.1093/jxb/err341.
  51. Campbell, M. R. Registration of maize germplasm line GEMS-0067 / M. R. Campbell, J. L. Jane, L. Pollak, M. Blanco, A. O'Brien //j. Plant Regist. 2007, 1, р. 60-61.
  52. Wu, Y. Genetic analysis of high amylose content in maize (Zea mays L.) using a triploid endosperm model / Y. Wu, M. Campbell, Y. Yen, Z. Wicks, A. Ibrahim. - Euphytica, 2009, 166, р. 155-164.
  53. Han, N. Breeding potential of maize germplasm line GEMS-0067 for high amylose proportion / N. Han, W. Li, C. Xie, F. Fu. - Preprints, 2021.
  54. Liu, D. In situ mapping of the effect of additional mutations on starch granule structure in amylose-extender (ae) maize kernels / D. Liu, N. Wellner, M. L. Parker, V. J. Morris, F. Cheng. - Carbohydr. Polym. 2015, 118, р. 199-208.

Authors:

  1. Kanukova Kristina Ruslanovna, PhD in Agriculture, researcher, Federal Scientific Center "Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences".
  2. Bogotova Zalina Ihsanovna, PhD in Biology, associate professor, Head of the Laboratory, Federal Scientific Center "Kabardino-Balkarian Scientific Center of the RAS"; Federal State Budgetary Educational Institution of Higher Education "Kh.M. Berbekov Kabardino-Balkarian SU".
  3. Khaudov Aliy-Bek Danilbekovich, researcher, Federal Scientific Center "Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences"; Branch of the Federal Scientific Center "Kabardino-Balkarian Scientific Center of the Russian Academy of Sciences" OF KBSC RAS.
  4. Arkhestova Janet Hazretalievna, Junior Researcher, Branch of the FSBRC "Kabardino-Balkar Scientific Center of the Russian Academy of Sciences”; Federal State Budgetary Educational Institution of Higher Education “V.M. Kokov Kabardino-Balkarian State Agrarian University”.
  5. Khagabanova Milana Mukhamedovna, PhD in Agriculture, associate professor, Federal Scientific Center "Kabardino-Balkar Scientific Center of the Russian Academy of Sciences".
  6. Belyi Alexandr Ivanovich, PhD in Agriculture, assistant professor, Federal State Budgetary Educational Institution of Higher Education “I.T. Trubilin Kuban State Agrarian University”.