Труды Кубанского государственного аграрного университета


<<<  Back

2021, № 93

UDC: 634.8:575.174
GSNTI: 68.35.55

Methods for Vitis species and varieties identification

The paper covers methods for Vitis species and grapevine varieties identification that involve the use of phenotypic characteristics (ampelography) and molecular markers such as microsatellites and single nucleotide polymorphisms. The advantages and disadvantages of each method, as well as their practical application, are presented. Single nucleotide polymorphisms have become the preferred markers for the development of identification panels for many animals and plants species, since the analysis is based on qualitative characteristics, not quantitative ones. Creation of a publicly accessible database with genotypes of both Russian autochthonous and foreign grape varieties is carried out at the National Research Center "Kurchatov Institute" as a part of creation of the National Genetic Information Database.
Keywords: Grapevine genetics, Vitis vinifera, ampelography, genotyping, microsatellites, single nucleotide polymorphisms, databases, high throughput sequencing.
DOI: 10.21515/1999-1703-93-315-320

References:

  1. Zhou, Y. The population genetics of structural variants in grapevine domestication / Y. Zhou et al. // Nat. Plants. - 2019. - No. 5. - P. 965-979. doi: 10.1038/s41477-019-0507-8.
  2. Zou, C. Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus // Y. Zhou et al. // Nat.Commun. - 2020. - 11(1): 413. doi:10.1038/s41467-019-14280-1.
  3. Massonnet, M. The genetic basis of sex determination in grapes / M. Massonnet et al. // Nat.Commun. - 2020. - 11(1): 2902. doi: 10.1038/s41467-020-16700-z.
  4. Li, B. Molecular characterization of Chinese grape landraces (Vitis L.) using microsatellite DNA markers / B. Li et al. // HortScience. - 2017. - No. 52. - P. 533-540. doi:10.21273/ HORTSCI11802-17.
  5. Jaillon, O. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm Phyla / O. Jaillon et al. // Nature. - 2007. - No. 449. - P. 463-467.
  6. Velasco, R. A High Quality Draft Consensus Sequence of the Genome of a Heterozygous Grapevine Variety / R. Velasco et al. // PLoS ONE. - 2017. - 2(12): e1326.
  7. Schneider, A. Genetics and ampelography trace the origin of Muscat fleur d'oranger / A. Schneider, D. Torello Marinoni, M. Crespan // Am. J. Enol. Vitic. - 2008. - 59 (2). - P. 200-204.
  8. Pavek, D. S. Selecting in situ conservation sites for grape genetic resources in the USA / D. S. Pa-vek, W. F. Lamboy, E. J. Garvey // Genet. Resour. - Crop. - Evol. 2003. - 50(2). - P. 165-173.
  9. Marés, H. Description des cépages de la Région Méditerranée de la France / H. Marés. Coulet, Montpellier, 1890-1891.
  10. This, P. Development of a standard set of microsatellite reference alleles for identification of grape cultivars / P. This et al. // Theor. APPl. - Genet. - 2004. - 109 (7). - P. 1448-1458.
  11. Liu, Y. Identification of grapevine (Vitis vinifera l.) cultivars by vine leaf image via deep learning and mobile devices / Y. Liu et. al. - 2020. doi:10.21203/rs.3.rs-27620/v1.
  12. Morgante, M. PCR-amplified microsatellites as markers in plant genetics / M. Morgante, A. M. Olivieri // Plant J. - 1993. - No. 3. - P. 175-182.
  13. Stępień, Ł. Assessing genetic diversity of Polish wheat (Triticum aestivum) varieties using microsatellite markers / Ł. Stępień, V. Mohler, J. Bocianowski, G. Koczyk // Genet. - Resour. Crop Evol. - 2007. No. 54. - P. 1499-1506.
  14. Bowers, J. E. Isolation and characterization of new polymorphic simple sequence repeat loci in grape (Vitis vinifera L.) /j. E. Bowers, G. S. Dangl, R. Vignani, C. P. Meredith // Genome. - 39(4). - P. 628-633. https://doi.org/10.1139/g96-080.
  15. Edwards, A. DNA typing and genetic maPPing with trimeric and tetrameric tandem repeats / A. Edwards, A. Civitello, H. A. Hammond, C. T. Caskey // Am. J. Hum. Genet. - 1991. - No. 49. - P. 746.
  16. Powell, W. Polymorphism revealed by simple sequence repeats / W. Powell, G. C. Machray, J. Provan // Trends Plant Sci. - 1996. - No. 1. - P. 215-222.
  17. Richard, G. F. Trinucleotide repeats and other microsatellites in yeasts / G. F. Richard, C. Hennequin, A. Thierry, B. Dujon // Res. Microbiol. - 1999. - No. 150. - P. 589-602.
  18. Richard, G. F. Mini- and microsatellite expansions: The recombination connection / G. F. Richard, F. Pâques // EMBO Rep. - 2000. - No. 1. - P. 122-126.
  19. Vouillamoz, J. F. Swiss Vitis microsatellite database /j. F. Vouillamoz, C. Arnold, A. Frei // Acta Hortic. - 2009. - No. 827. - P. 477-480.
  20. Dallakyan, M. Genetic diversity and traditional uses of aboriginal grape (Vitis vinifera L.) varieties from the main viticultural regions of Armenia / M. Dallakyan, S. Esoyan, B. Gasparyan, A. Smith, N. Hovhannisyan // Genet. Resour. Crop. Evol. - 2020. - No. 67. - P. 999-1024.
  21. De Oliveira, G. L. Genetic structure and molecular diversity of Brazilian grapevine germplasm: Management and use in breeding programs / G. L De Oliveira et. al. // PLoS ONE. - 2020. - 15: e0240665.
  22. Žulj Mihaljević, M. Genetic diversity, population structure, and parentage analysis of Croatian grapevine germplasm / M. Žulj Mihaljević et. al. // Genes. - 2020. - No. 11. - P. 737.
  23. Riaz, S. Genetic diversity and parentage analysis of grape rootstocks / S. Riaz et al. // Theor. APPl. Genet. - 2019. - No. 132. - P. 1847-1860.
  24. Cabezas, J. A. A 48 SNP set for grapevine cultivar identification /j. A.Cabezas et al. // BMC Plant Biol. - 2011. - No. 11. - P. 153. https://doi.org/10.1186/1471-2229-11-153.
  25. Albarghouthi, M. N. Impact of polymer hydrophobicity on the properties and performance of DNA sequencing matrices for capillary electrophoresis / M. N. Albarghouthi et al. // Electrophoresis. - 2001. - No. 22. - P. 737-747.
  26. Tu, O. The influence of fluorescent dye structure on the electrophoretic mobility of end-labeled DNA / O. Tu et al. // Nucleic Acids Res. - 1998. - № 26. - P. 2797-2802.
  27. Van Dijk, E. L. Ten years of next-generation sequencing technology / E. L. Van Dijk, H. Auger, Y. Jaszczyszyn, C. Thermes // Trends Genet. - 2014. - No. 30. - P. 418-426.
  28. Darby, B. J. Digital fragment analysis of short tandem repeats by high-throughput amplicon sequencing / B. J. Darby, S. F. Erickson, S. D. Hervey, S. N. Ellis-Felege // Ecol. Evol. - 2016. - No. 6. - P. 4502-4512.
  29. Lepais, O. Fast sequence-based microsatellite genotyping development workflow / O. Lepais et al. // PeerJ. - 2020. - 8:e9085.
  30. Kunej, U. The Potential of HTS Approaches for Accurate Genotyping in Grapevine (Vitis vinifera L.) / U. Kunej, A. Dervishi, V. Laucou, J. Jakše, N. šTajner // Genes. - 2020. - 11(8):917. https://doi.org/10.3390/genes11080917.
  31. Lijavetzky, D. High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology / D. Lijavetzky, J. A. Cabezas, A. Ibanez, V. Rodriguez, J. M. Martinez-Zapater // BMC Genomics. - 2007. - 8:424.
  32. Laucou, V. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs / V. Laucou et al. // PLoS ONE. - 2018. - 13:e0192540.
  33. Zurn, J. D. A new SSR fingerprinting set and its comparison to existing SSR- and SNP-based genotyping platforms to manage Pyrus germplasm resources /j. D. Zurn et al. // Tree Genet. Genomes. - 2020. - 16:72.
  34. Žulj Mihaljević, M. Genetic Diversity, Population Structure, and Parentage Analysis of Croatian Grapevine Germplasm / M. Žulj Mihaljević et al. // Genes. - 2020. - 11:737. doi:10.3390/genes11070737.
  35. Fedosov, D. Y. SNP-Based Analysis Reveals Authenticity and Genetic Similarity of Russian Indigenous V. vinifera Grape Cultivars / D. Y. Fedosov, A. A. Korzhenkov, K. O. Petrova et al. // Plants 2021. - 10 (12). - 2696. doi:10.3390/plants10122696.

Authors:

  1. Petrova Kristina Olegovna, Researcher, National Research Center "Kurchatov Institute".
  2. Fedosov Dmitry Yurievich, head of laboratory, National Research Center "Kurchatov Institute".