Труды Кубанского государственного аграрного университета


<<<  Back

2020, № 85

UDC: 632.935: 66.088
GSNTI: 68.37.13

Atmospheric pressure Non-Thermal Plasma and its opportunities for treatments of agricultural and food products

The review is devoted to a relatively new but very promising method of control and prevention of farm and food products spoilage and contamination with pathogenic microorganisms, namely, the application of non-thermal plasma. Exposure to non-thermal plasma is a promising method for the preservation of food products, such as meat and meat products, fresh vegetables and fruit, because the method does not use (doesn’t provide) heating during the treatment process. Non-thermal plasma generates at atmospheric pressure in various plasma-supporting gases, both in inert gases and in the air. It is weakly ionized and strongly non-equilibrium, and plasma energetic electrons efficiently activate and dissociate neutral particles in the surrounding gases, which is very important, since a rather intensive UV radiation and high concentration of physically and biochemically active particles are created (reactional compounds, such as radicals, ozone, etc.) with low energy consumption. As a result, it is the main thing that determines the biochemical activity of non-thermal plasma and lets us deal with the practical requirements under consideration in this review. The article gives a review of current data which evidence that exposure to non-thermal plasma decreases the number of pathogenic microorganisms in meat and meat products, fresh vegetables and fruit, as well as in seed stock. In the review, we tried to present the efficiency of treatment with nonthermal plasma as a method of decontamination for use in the agriculture and food industry. Moreover, it provides a brief overview of principle methods used for the creation of non-thermal plasma at atmospheric pressure.
Keywords: Cold plasma, plasma treatment, product safety, decontamination, pathogenic microflora.
DOI: 10.21515/1999-1703-85-183-203

References:

  1. Lee, J. Use of Atmospheric Pressure Cold Plasma for Meat Industry / J. Lee, C. W. Lee, H. I. Yong, H. J. Lee, C. Jo, S. Jung // Korean Journal for Food Science of Animal Resources. - 2017. - Vol. 37(4). - P. 477-485. - https://doi.org/10.5851/kosfa.2017.37.4.477.
  2. Акишев, Ю. C. Низкотемпературная плазма при атмосферном давлении и ее возможности для приложений / Ю. C. Акишев // Изв. вузов. Химия и хим. технология. - 2019. - Т. 62. - № 8. - С. 26-60. - https://doi.org/10.6060/ ivkkt.20196208.5908.
  3. Samukawa, S. The 2012 Plasma Roadmap / S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J. Ch. Whitehead, A. B. Murphy, A. F. Gutsol, S. Starikovskaia, U. Kortshagen, J.-P. Boeuf, T. J. Sommerer, M. J. Kushner, U. Czarnetzki, N. Mason // Journal of Physics D: Applied Physics. - 2012. - Vol. 45(25). - Article no. 253001. - https://doi.org/ 10.1088/ 0022-3727/45/25/253001.
  4. Bruggeman, P. J. Plasma-liquid interactions: a review and roadmap / P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. Fernandez Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E. C. Neyts, J. Pawlat, Z. Lj. Petrovic, R. Pflieger, S. Reuter, D. C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P. A. Tsai, J. R. R. Verlet, T. von Woedtke, K. R. Wilson, K. Yasui, G. Zvereva // Plasma sources science and technology. - 2016. - Vol. 25(5). - Article no. 053002. - https://doi.org/ 10.1088/0963-0252/25/5/053002.
  5. Stryczewska, H. D. Non-Thermal Plasma Aided Soil Decontamination / H. D. Stryczewska, J. Pawłat, K. Ebihara // Journal of Advanced Oxidation Technologies. - 2013. - Vol. 16(1). - P. 23-30. - ttps://doi.org/10.1515/jaots-2013-0103.
  6. Zhang, H. Non-thermal plasma technology for organic contaminated soil remediation: A review / H. Zhang, D. Ma, R. Qiu, Y.-T. Tang, C. Du // Chemical Engineering Journal. - 2016. - Vol. 313. - P. 157-170. - https://doi.org/ 10.1016/j.cej.2016.12.067.
  7. El-Sayed, W. S. Deterioration to extinction of wastewater bacteria by non-thermal atmospheric pressure air plasma as assessed by 16S rDNA-DGGE fingerprinting / W. S. El-Sayed, S. A. Ouf, A. A. Mohamed // Front Microbiol. - 2015. - Vol. 6. - Article no. 1098. - https://doi.org/ 10.3389/fmicb.2015.01098.
  8. Лазукин, А. В. Влияние частоты питающего напряжения и материала диэлектрического барьера на спектральный состав излучения плазмы поверхностного разряда / А. В. Лазукин, Д. И. Кавыршин, С. А. Кривов, С. Д. Федорович // Вестник Московского энергетического института. - 2016. - № 6. - С. 24-30.
  9. Sera, B. Disinfection from pine seeds contaminated with Fusarium circinatum Nirenberg & O’Donnell using non-thermal plasma treatment / B. Sera, A. Zahoranová, H. Bujdakova, M. Sery // Romanian Reports in Physics. - 2019. - Vol. 71. - Article no. 701.
  10. Ochi, A. Management of bakanae and bacterial seedling blight diseases in nurseries by irradiating rice seeds with atmospheric plasma / A. Ochi // Plant pathology. - 2017. - Vol. 66 (1). - P. 67-76. - https://doi.org/10.1111/ppa.12555.
  11. Panngom, K. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host / K. Panngom, S. H. Lee, D. H. Park, G. B. Sim, Y. H. Kim, H. S. Uhm, G. Park, E. H. Choi // PLoS One. - 2014. - Vol. 9(6). - Article no. e99300. - https://doi.org/10.1371/journal.pone.0099300.
  12. Kim, J. E. Microbial decontamination of red pepper powder by cold plasma / J. E. Kim, D. U. Lee, S. C. Min // Food Microbiology. - 2014. - Vol. 38. - P. 128-136. - https://doi.org/ 10.1016/j.fm.2013.08.019.
  13. Basaran, P. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma (LPCP) treatment / P. Basaran, N. Basaran-Akgul, L. Oksuz // Food Microbiology. - 2008. - Vol. 25(4). - P. 626-632. - https://doi.org/10.1016/j.fm.2007.12.005.
  14. Selcuk, M. Decontamination of grains and legumes infected with Aspergillus spp. and Penicillum spp. by cold plasma treatment / M. Selcuk, L. Oksuz, P. Basaran // Bioresource Technology. - 2008. - Vol. 99 (11). - P. 5104-5109. - https://doi.org/10.1016/j.biortech.2007.09.076.
  15. Hayashi, N. Sterilization characteristics of the surfaces of agricultural products using active oxygen species generated by atmospheric plasma and UV light / N. Hayashi, Y. Yagyu, A. Yonesu, M. Shiratani // Japanese Journal of Applied Physics. - 2014. - Vol. 53(5S1). - Article no. 05FR03. - https://doi.org/10.7567/JJAP.53.05FR03.
  16. Julak, J. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge / J. Julak, H. Souskova, V. Scholtz, E. Kvasnickova, D. Savicka, V. Kriha // Folia Microbiol (Praha). - 2018. - Vol. 63(1). - P. 63-68. - https://doi.org/10.1007/s12223-017-0535-6.
  17. Gharagozalian, M. Water treatment by the AC gliding arc air plasma / M. Gharagozalian, D. Dorranian, M. Ghoranneviss // Journal of Theoretical and Applied Physics. - 2017. - Vol. 11. - P. 1-10. - https://doi.org/ 10.1007/s40094-017-0254-z.
  18. Hashizume, H. Inactivation Process of Penicillium digitatum Spores Treated with Non-equilibrium Atmospheric Pressure Plasma / H. Hashizume, T. Ohta, T. Mori, S. Iseki, M. Hori, M. Ito // Japanese Journal of Applied Physics. - 2013. - Vol. 52(5R). - Article no. 056202. - https://doi.org/10.7567/JJAP.52.056202.
  19. Iseki, S. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma / S. Iseki, T. Ohta, A. Aomatsu, M. Ito, H. Kano, Y. Higashijima, M. Hori // Applied Physics Letters. - 2010. - Vol. 96 (15). - Article no. 153704. - https://doi.org/10.1063/1.3399265.
  20. Schnabel, U. Decontamination and Sensory Properties of Microbiologically Contaminated Fresh Fruits and Vegetables by Microwave Plasma Processed Air (PPA) / U. Schnabel, R. Niquet, O. Schlüter, H. Gniffke, J. Ehlbeck // Journal of Food Processing and Preservation. - 2015. - Vol. 39(6). - P. 653-662. - https://doi.org/ 10.1111/jfpp.12273.
  21. Shi, X. Effect of Low-Temperature Plasma on Microorganism Inactivation and Quality of Freshly Squeezed Orange Juice / X. Shi, G. Zhang, X. Wu, Y. Li, Y. Ma, X. Shao // IEEE Transactions on Plasma Science. - 2011. - Vol. 39(7). - P. 1591-1597. - https://doi.org/ 10.1109/TPS.2011.2142012.
  22. Perni, S. Cold Atmospheric Plasma Decontamination of the Pericarps of Fruit / S. Perni, D. W. Liu, G. Shama, M. G. Kong // Journal of Food Protection. - 2008. - Vol. 71 (2). - P. 302-308. - https://doi.org/10.4315/0362-028X-71.2.302.
  23. Dirks, B. P. Treatment of Raw Poultry with Nonthermal Dielectric Barrier Discharge Plasma to Reduce Campylobacter jejuni and Salmonella enterica / B. P. Dirks, D. Dobrynin, G. Fridman, Y. Mukhin, A. Fridman, J. J. Quinlan // Journal of Food Protection. - 2012. - Vol. 75 (1). - P. 22-28. - https://doi.org/10.4315/0362-028X.JFP-11-153.
  24. Noriega, E. Cold atmospheric gas plasma disinfection of chicken meat and chicken skin contaminated with Listeria innocua / E. Noriega, G. Shama, A. Laca, M. Díaz, M. G. Kong // Food Microbiology. - 2011. - Vol. 28 (7). - P. 1293-1300. - https://doi.org/10.1016/j.fm.2011.05.007.
  25. Rowan, N. J. Pulsed-Plasma Gas-Discharge Inactivation of Microbial Pathogens in Chilled Poultry Wash Water / N. J. Rowan, S. Espie, J. Harrower, J. G. Anderson, L. Marsili, S. J. MacGregor // Journal of Food Protection. - 2007. - Vol. 70(12). - P. 2805-2810. - https://doi.org/ 10.4315/ 0362-028X-70.12.2805.
  26. Jahid, I. Inactivation kinetics of cold oxygen plasma depend on incubation conditions of Aeromonas hydrophila biofilm on lettuce / I. Jahid, N. Han, S.-D. Ha // Food Research International. - 2014. - Vol. 55. - P. 181-189. https://doi.org/ 10.1016/j.foodres.2013.11.005.
  27. Ehlbeck, J. Plasma Treatment of Food / J. Ehlbeck, U. Schnabel, M. Andrasch, J. Stachowiak, N. Stolz, A. Fröhling, O. Schlüter, K.-D. Weltmann // Contributions to Plasma Physics. - 2015. - Vol. 55(10). - P. 753-757. - https://doi.org/10.1002/ ctpp.201510013.
  28. Alkawareek, M. Y. Er.adication of Pseudomonas aeruginosa Biofilms by Atmospheric Pressure Non-Thermal Plasma / M. Y. Alkawareek, Q. T. Algwari, G. Laverty, S. P. Gorman, W. G. Graham, D. O'Connell, B. F. Gilmore // PLoS ONE. - 2012. - Vol. 7(8). - Article no. e44289. - https://doi.org/10.1371/journal.pone.0044289.
  29. Ben Belgacem, Z. Innovative non-thermal plasma disinfection process inside sealed bags: Assessment of bactericidal and sporicidal effectiveness in regard to current sterilization norms / Z. Ben Belgacem, G. Carre, E. Charpentier, F. Le-Bras, T. Maho, E. Robert, M. P. Gelle // PLoS One. - 2017. - Vol. 12(6). - Article no. e0180183. - https://doi.org/10.1371/journal.pone.0180183.
  30. Flynn, P. B. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence / P. B. Flynn, A. Busetti, E. Wielogorska, O. P. Chevallier, C. T. Elliott, G. Laverty, S. P. Gorman, W. G. Graham, B. F. Gilmore // Sci Rep. - 2016. - Vol. 6. - Article no. 26320. - https://doi.org/10.1038/srep26320.
  31. Jayasena, D. D. Flexible thin-layer dielectric barrier discharge plasma treatment of pork butt and beef loin: Effects on pathogen inactivation and meat-quality attributes / D. D. Jayasena, H. J. Kim, H. I. Yong, S. Park, K. Kim, W. Choe, C. Jo // Food Microbiology. - 2015. - Vol. 46. - P. 51-57. - https://doi.org/10.1016/j.fm.2014.07.009.
  32. Perni, S. Cold Atmospheric Plasma Disinfection of Cut Fruit Surfaces Contaminated with Migrating Microorganisms / S. Perni, G. Shama, M. G. Kong // Journal of Food Protection. - 2008. - Vol. 71(8). - P. 1619-1625. - https://doi.org/10.4315/0362-028X-71.8.1619.
  33. Kim, B. Effect of atmospheric pressure plasma on inactivation of pathogens inoculated onto bacon using two different gas compositions / B. Kim, H. Yun, S. Jung, Y. Jung, H. Jung, W. Choe, C. Jo // Food Microbiology. - 2011. - Vol. 28(1). - P. 9-13. - https://doi.org/ 10.1016/j.fm.2010.07.022.
  34. Kim, H.-J. Effects of dielectric barrier discharge plasma on pathogen inactivation and the physicochemical and sensory characteristics of pork loin / H.-J. Kim, H. I. Yong, S. Park, W. Choe, C. Jo // Current Applied Physics. - 2013. - Vol. 13 (7). - P. 1420-1425. - https://doi.org/ 10.1016/j.cap.2013.04.021.
  35. Montenegro, J. Inactivation of E. coli O157:H7 Using a Pulsed Nonthermal Plasma System / J. Montenegro, R. Ruan, H. Ma, P. Chen // Journal of Food Science. - 2002. - Vol. 67 (2). - P. 646-648. - https://doi.org/10.1111/j.1365-2621. 2002.tb10653.x.
  36. Klockow, P. A. Safety and quality assessment of packaged spinach treated with a novel ozone-generation system / P. A. Klockow // LWT - Food Science and Technology. - 2009. - Vol. 42 (6). - P. 1047-1053. - https://doi.org/10.1016 /j.lwt.2009.02.011.
  37. Klockow, P. A. Quality and Safety Assessment of Packaged Spinach Treated with a Novel Atmospheric, Non-Equilibrium Plasma System / P. A. Klockow, K. M. Keener // Paper presented at the 2008 Providence, Rhode Island, June 29 - July 2, 2008. - Article no. 084396. - https://doi.org/10.13031/2013.25061.
  38. Kobayashi, T. Bactericidal pathway of Escherichia coli in buffered saline treated with oxygen radicals / T. Kobayashi, N. Iwata, J.-S. Oh, H. Hahizume, T. Ohta, K. Takeda, K. Ishikawa, M. Hori, M. Ito // Journal of Physics D: Applied Physics. - 2017. - Vol. 50(15). - Article no. 155208. - https://doi.org/10.1088/1361-6463/aa61d7.
  39. Yong, H. I. Pathogen inactivation and quality changes in sliced cheddar cheese treated using flexible thin-layer dielectric barrier discharge plasma / H. I. Yong, H.-J. Kim, S. Park, K. Kim, W. Choe, S. J. Yoo, C. Jo // Food Research International. - 2015. - Vol. 69. - P. 57-63. - https://doi.org/10.1016/j.foodres.2014.12.008.
  40. Kilonzo-Nthenge, A. Atmospheric Cold Plasma Inactivation of Salmonella and Escherichia coli on the Surface of Golden Delicious Apples / A. Kilonzo-Nthenge, S. Liu, S. Yannam, A. Patras // Frontiers in nutrition. - 2018. - Vol. 5. - Article no. 120. - https://doi.org/10.3389/fnut. 2018.00120.
  41. Baier, M. Impact of plasma processed air (PPA) on quality parameters of fresh produce / M. Baier, J. Ehlbeck, D. Knorr, W. B. Herppich, O. Schlüter // Postharvest Biology and Technology. - 2015. - Vol. 100. - P. 120-126. - ttps://doi.org/10.1016/j.postharvbio.2014.09.015.
  42. Puligundla, P. Effect of corona discharge plasma jet treatment on decontamination and sprouting of rapeseed (Brassica napus L.) seeds / P. Puligundla, J.-W. Kim, C. Mok // Food Control. - 2017. - Vol. 71. - P. 376-382. - https://doi.org/10.1016/j.foodcont.2016.07.021.
  43. Kim, J. H. Moisture vaporization-combined helium dielectric barrier discharge-cold plasma treatment for microbial decontamination of onion flakes / J. H. Kim, S. C. Min // Food Control. - 2018. - Vol. 84. - P. 321-329. - https://doi.org/ 10.1016/j.foodcont.2017.08.018.
  44. Critzer, F. J. Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces / F. J. Critzer, K. Kelly-Wintenberg, S. L. South, D. A. Golden // J Food Prot. - 2007. - Vol. 70(10) - P. 2290-2296. - https://doi.org/10.4315/0362-028X-70.10.2290.
  45. Niemira, B. A. Cold plasma inactivates Salmonella Stanley and Escherichia coli O157:H7 inoculated on golden delicious apples / B. A. Niemira, J. Sites // J Food Prot. - 2008. - Vol. 71(7). - P.1357-1365. - https://doi.org/10.4315/0362-028X-71.7.1357.
  46. Deng, S. Inactivation of Escherichia coli on Almonds Using Nonthermal Plasma / S. Deng, R. Ruan, C. K. Mok, G. Huang, X. Lin, P. Chen // Journal of Food Science. - 2007. - Vol. 72 (2). - P. M62-M66. - https://doi.org/10.1111/j.1750-3841.2007.00275.x.
  47. Niemira, B. A. Cold Plasma Decontamination of Foods / B. A. Niemira // Annual Review of Food Science and Technology. - 2012. - Vol. 3(1). - P. 125-142. - https://doi.org/10.1146/annurev-food-022811-101132.
  48. Baier, M. Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: Evaluation of physical and physiological effects and antimicrobial efficacy / M. Baier, J. Foerster, U. Schnabel, D. Knorr, J. Ehlbeck, W.B. Herppich, O. Schlüter // Postharvest Biology and Technology. - 2013. - Vol. 84. - P. 81-87. - https://doi.org/10.1016/j.postharvbio.2013.03.022.
  49. Baier, M. Inactivation of Shiga toxin-producing Escherichia coli O104:H4 using cold atmospheric pressure plasma / M. Baier, T. Janßen, L. H. Wieler, J. Ehlbeck, D. Knorr, O. Schlüter // Journal of Bioscience and Bioengineering. - 2015. - Vol. 120(3). - P. 275-279. - https://doi.org/ 10.1016/j.jbiosc.2015.01.003.
  50. Baier, M. Non-thermal atmospheric pressure plasma: Screening for gentle process conditions and antibacterial efficiency on perishable fresh produce / M. Baier, M. Görgen, J. Ehlbeck, D. Knorr, W. B. Herppich, O Schlüter. // Innovative Food Science & Emerging Technologies. - 2014. - Vol. 22. - P. 147-157. https://doi.org/ 10.1016/j.ifset.2014.01.011.
  51. Han, L. Atmospheric cold plasma interactions with modified atmosphere packaging inducer gases for safe food preservation / L. Han, D. Boehm, E. Amias, V. Milosavljević, P. Cullen, P. Bourke // Innovative Food Science & Emerging Technologies. - 2016. - Vol. 38, Part B. - P. 384-392. - https://doi.org/10.1016/j.ifset. 2016.09.026.
  52. Bermudez-Aguirre, D. Effect of atmospheric pressure cold plasma (APCP) on the inactivation of Escherichia coli in fresh produce / D. Bermudez-Aguirre, E. Wemlinger, P. Pedrow, G. Barbosa-Cánovas, M. Garcia-Perez // Food Control. - 2013. - Vol. 34(1). - P. 149-157. https://doi.org/10.1016/j.foodcont.2013.04.022.
  53. Prasad, P. Effect of atmospheric cold plasma (ACP) with its extended storage on the inactivation of Escherichia coli inoculated on tomato / P. Prasad, D. Mehta, V. Bansal, R. S Sangwan. // Food Research International. - 2017. - Vol. 102. - P. 402-408. https://doi.org/10.1016/j.foodres. 2017.09.030.
  54. Lee, K. H. Evaluation of cold plasma treatments for improved microbial and physicochemical qualities of brown rice / K. H. Lee, H.-J. Kim, K. S. Woo, C. Jo, J.-K. Kim, S. H. Kim, H. Y. Park, S.-K. Oh, W. H. Kim // LWT. - 2016. - Vol. 73. - P. 442-447. - https://doi.org/10.1016/ j.lwt. 2016.06.055.
  55. Schnabel, U. Inactivation of Vegetative Microorganisms and Bacillus atrophaeus Endospores by Reactive Nitrogen Species (RNS) / U. Schnabel, M. Andrasch, K.-D. Weltmann, J. Ehlbeck // Plasma Processes and Polymers. - 2014. - Vol. 11 (2). - P. 110-116. - https://doi.org/10.1002/ppap. 201300072.
  56. Fernandez, A. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology / A. Fernandez, E. Noriega, A. Thompson // Food Microbiology. - 2013. - Vol. 33(1). - P. 24-29. https://doi.org/10.1016/j.fm.2012.08.007.
  57. Georgescu, N. Inactivation of Salmonella enterica serovar Typhimurium on egg surface, by direct and indirect treatments with cold atmospheric plasma / N. Georgescu, L. Apostol, F. Gherendi // Food Control. - 2017. - Vol. 76. - P. 52-61. - https://doi.org/10.1016/j.foodcont.2017.01.005.
  58. Hertwig, C. Decontamination of whole black pepper using different cold atmospheric pressure plasma applications / C. Hertwig, K. Reineke, J. Ehlbeck, D. Knorr, O. Schlüter // Food Control. - 2015. - Vol. 55. - P. 221-229. - https://doi.org/10.1016/j.foodcont.2015.03.003.
  59. Hertwig, C. Inactivation of Salmonella Enteritidis PT30 on the surface of unpeeled almonds by cold plasma / C. Hertwig, A. Leslie, N. Meneses, K. Reineke, C. Rauh, O. Schlüter // Innovative food science & emerging technologies. - 2017. - Vol. 44. - P. 242-248. - https://doi.org/10.1016/ j.ifset.2017.02.007.
  60. Jahid, I. K. Mixed culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma / I. K. Jahid, N. Han, Zhang C. Y., S. D. Ha // Food Microbiology. - 2015. - Vol. 46. - P. 383-394. - https://doi.org/10.1016/j.fm.2014.08.003.
  61. Zhang, M. Bactericidal effects of nonthermal low-pressure oxygen plasma on S. typhimurium LT2 attached to fresh produce surfaces / M. Zhang, J. K. Oh, L. Cisneros-Zevallos, M. Akbulut // Journal of Food Engineering. - 2013. - Vol. 119(3). - P. 425-432. - https://doi. org/10.1016/j.jfoodeng.2013.05.045.
  62. Ziuzina, D. Atmospheric cold plasma inactivation of Escherichia coli, Salmonella enterica serovar Typhimurium and Listeria monocytogenes inoculated on fresh produce / D. Ziuzina, S. Patil, P. J. Cullen, K. M. Keener, P. Bourke // Food Microbiology. - 2014. - Vol. 42. - P. 109-116. - https://doi.org/10.1016/j.fm.2014.02.007.
  63. Ragni, L. Non-thermal atmospheric gas plasma device for surface decontamination of shell eggs / L. Ragni, A. Berardinelli, L. Vannini, C.Montanari, F. Sirri, M. E. Guerzoni, A. Guarnieri // Journal of Food Engineering. - 2010. - Vol. 100(1). - P. 125-132. - https://doi.org/ 10.1016/j.jfoodeng.2010.03.036.
  64. Schnabel, U. Plasma-Treated Air and Water-Assessment of Synergistic Antimicrobial Effects for Sanitation of Food Processing Surfaces and Environment / U. Schnabel, O. Handorf, K. Yarova, B. Zessin, S. Zechlin, D. Sydow, E. Zellmer, J. Stachowiak, M. Andrasch, H. Below, J. Ehlbeck // Foods (Basel, Switzerland). - 2019. - Vol. 8 (2). Article no. 55. - https://doi.org/10.3390/ foods8020055.
  65. Srey, S. Reduction effect of the selected chemical and physical treatments to reduce L. monocytogenes biofilms formed on lettuce and cabbage / S. Srey, S. Park, I. Jahid, S.-D. Ha // Food Research International. - 2014. - Vol. 62. - P. 484-491. https://doi.org/10.1016/j.foodres. 2014.03.067.
  66. Song, H. P. Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes / H. P.Song, B. Kim, J. H. Choe, S. Jung, S. Y. Moon, W. Choe, C. Jo // Food Microbiology. - 2009. - Vol. 26(4). - P. 432-436. - https://doi.org/10.1016/j.fm.2009.02.010.
  67. Lee, H. J. Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets / H. J. Lee, H. Jung, W. Choe, J. S. Ham, J. H. Lee, C. Jo // Food Microbiology. - 2011. - Vol. 28(8). - P. 1468-1471. - https://doi.org/10.1016/j.fm. 2011.08.002.
  68. Rød, S. K. Cold atmospheric pressure plasma treatment of ready-to-eat meat: Inactivation of Listeria innocua and changes in product quality / S. K. Rød, F. Hansen, F. Leipold, S. Knøchel // Food Microbiology. - 2012. - Vol. 30(1). - P. 233-238. - https://doi.org/10.1016/j.fm.2011.12.018.
  69. Ji, S. H. Enhancement of vitality and activity of a plant growth-promoting bacteria (PGPB) by atmospheric pressure non-thermal plasma / S. H. Ji, J. S. Kim, C. H. Lee, H. S. Seo, S. C. Chun, J. Oh, E.-H. Choi, G. Park // Sci Rep. - 2019. - Vol. 9(1). - Article no. 1044. - https://doi.org/10.1038/s41598-018-38026-z.
  70. Chiper, A. S. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples / A. S. Chiper, W. Chen, O. Mejlholm, P. Dalgaard, E. Stamate // Plasma Sources Science and Technology. - 2011. - Vol. 20(2). - Article no. 025008. https://doi.org/10.1088/0963-0252/20/2/025008.
  71. Carre, G. Contribution of Fluorescence Techniques in Determining the Efficiency of the Non-thermal Plasma Treatment / G. Carre, E. Charpentier, S. Audonnet, C. Terryn, M. Boudifa, C. Doliwa, Z. B. Belgacem, S. C. Gangloff, M. P. Gelle // Front Microbiol. - 2018. - Vol. 9. - Article no. 2171. https://doi.org/10.3389/ fmicb.2018.02171.
  72. Vleugels, M. Atmospheric plasma inactivation of biofilm-forming bacteria for food safety control / M. Vleugels, G. Shama, X. T. Deng, E. Greenacre, T. Brocklehurst, M. G. Kong // IEEE Transactions on Plasma Science. - 2005. - Vol. 33(2). - P. 824-828. https://doi.org/10.1109/ TPS.2005.844524.
  73. Lacombe, A. Atmospheric cold plasma inactivation of aerobic microorganisms on blueberries and effects on quality attributes / A. Lacombe, B. A. Niemira, J. B. Gurtler, X. Fan, J. Sites, G. Boyd, H. Chen // Food Microbiology. - 2015. - Vol. 46. - P. 479-484. https://doi.org/10.1016 /j.fm.2014.09.010.
  74. Misra, N. N. In-package atmospheric pressure cold plasma treatment of strawberries / N. N. Misra, S. Patil, T. Moiseev, P. Bourke, J. P. Mosnier, K. M. Keener, P. J. Cullen // Journal of Food Engineering. - 2014. - Vol. 125. - P. 131-138. https://doi.org/10.1016/j.jfoodeng. 2013.10.023.
  75. Schwabedissen, A. PlasmaLabel - a New Method to Disinfect Goods Inside a Closed Package Using Dielectric Barrier Discharges / A. Schwabedissen, P. Łaciński, X. Chen, J. Engemann // Contributions to Plasma Physics. - 2007. - Vol. 47(7). - P. 551-558. - https://doi.org/ 10.1002/ ctpp.200710071.
  76. Bermudez-Aguirre, D. Chapter 2 - Advances in the inactivation of microorganisms and viruses in food and model systems using cold plasma / D. Bermudez-Aguirre // Advances in Cold Plasma Applications for Food Safety and Preservation. - Academic Press: 2020. - P. 49-91. - https://doi. org/10.1016/B978-0-12-814921-8.00002-5.
  77. Ryu, Y.-H. Effects of Background Fluid on the Efficiency of Inactivating Yeast with Non-Thermal Atmospheric Pressure Plasma / Y.-H. Ryu, Y.-H. Kim, J.-Y. Lee, G.-B. Shim, H.-S. Uhm, G. Park, E. H. Choi // PLoS One. - 2013. - Vol. 8(6). - Article no. e66231. https://doi.org/10.1371/journal.pone.0066231.
  78. Niemira, B. A. Cold Plasma Reduction of Salmonella and Escherichia coli O157:H7 on Almonds Using Ambient Pressure Gases / B. A. Niemira // Journal of Food Science. - 2012. - Vol. 77(3). - P. M171-M175. https://doi.org/10.1111/j.1750-3841.2011.02594.x.
  79. Kim, H. Use of plasma gliding arc discharges on the inactivation of E. coli in water / H. Kim, Y. Cho, I.H. Hwang, D.H. Lee, D. Cho, A. Rabinovich, A. Fridman // Separation and Purification Technology. - 2013. - Vol. 120. - P. 423-428. https://doi.org/10.1016/j.seppur.2013.09.041.
  80. Liao, X. Effect of preliminary stresses on the resistance of Escherichia coli and Staphylococcus aureus toward non-thermal plasma (NTP) challenge / X. Liao, J. Li, Y. Suo, J. Ahn, D. Liu, S. Chen, Y. Hu, X. Ye, T. Ding // Food Res Int. - 2018. - Vol. 105. - P. 178-183. https://doi.org/10.1016/j.foodres.2017.11.010.
  81. Гордеев, Ю. А. Плазменные нанотехнологии - основа инновационного потенциала земледелия XXI века / Ю. А. Гордеев // Актуальная биотехнология. - 2014. - №. 4(11). - С. 4-9.
  82. Hayashi, N. Antioxidative activity and growth regulation of Brassicaceae induced by oxygen radical irradiation / N. Hayashi, R. Ono, M. Shiratani, A. Yonesu // Japanese Journal of Applied Physics. - 2015. - Vol. 54(6S2). - Article no. 06GD01. https://doi.org/10.7567/JJAP.54.06GD01.
  83. Koga, K. Simple method of improving harvest by nonthermal air plasma irradiation of seeds of Arabidopsis thaliana (L.) / K. Koga, S. Thapanut, T. Amano, H. Seo, N. Itagaki, N. Hayashi, M. Shiratani // Applied Physics Express. - 2015. - Vol. 9(1). - Article no. 016201. https://doi.org/10.7567/APEX.9.016201.
  84. Măgureanu, M. Stimulation of the Germination and Early Growth of Tomato Seeds by Non-thermal Plasma / M. Măgureanu, R. Sîrbu, D. Dobrin, M. Gîdea // Plasma Chemistry and Plasma Processing. - 2018. - Vol. 38(5). - P. 989-1001. https://doi.org/10.1007/s11090-018-9916-0.
  85. ŠTěpánová, V. Atmospheric pressure plasma treatment of agricultural seeds of cucumber (Cucumis sativus L.) and pepper (Capsicum annuum L.) with effect on reduction of diseases and germination improvement / V. ŠTěpánová, P. Slavicek, J. Kelar, J. Prasil, M. Smékal, M. Stupavska, J. Jurmanová, M. Černák // Plasma Processes and Polymers. - 2017. - Vol. 15. - Article no. e1700076. https://doi.org/10.1002/ppap.201700076.
  86. Park, Y. The biological effects of surface dielectric barrier discharge on seed germination and plant growth with barley / Y. Park, K. S. Oh, J. Oh, D. C. Seok, S. B. Kim, S. J. Yoo, M.-J. Lee // Plasma Processes and Polymers. - 2018. - Vol. 15(2). - Article no. 1600056. https://doi.org/ 10.1002/ppap.201600056.
  87. Oehmigen, K. Estimation of Possible Mechanisms of Escherichia coli Inactivation by Plasma Treated Sodium Chloride Solution / K. Oehmigen, J. Winter, M. Hähnel, C. Wilke, R. Brandenburg, K.-D. Weltmann, T. von Woedtke // Plasma Processes and Polymers. - 2011. - Vol. 8(10). - P. 904-913. https://doi.org/10.1002/ppap.201000099.

Authors:

  1. Petrukhina Daria Igorevna, PhD in Biological sciences, Senior Researcher, Russian Institute of Radiology and Agroecology.